
Logic Programming

Theory Lecture 4:

Proof Search for

Definite Clause Predicate Logic

Alex Simpson

School of Informatics

24th October 2013

Recap (Lecture 3): Definite clause predicate logic

A definite clause is a formula of one of the two shapes below

B (a Prolog fact B .)

A1 ∧ · · · ∧ Ak → B (a Prolog rule B :- A1, . . . ,Ak .)

where A1, . . . ,Ak ,B are all atomic formulas.

A logic program is a list F1, . . . ,Fn of definite clauses

A goal is a list G1, . . . ,Gm of atomic formulas.

The job of the system is to ascertain whether the logical
consequence below holds.

∀Vars(F1).F1, . . . ,∀Vars(Fn).Fn |= ∃Vars(G1, . . . ,Gm).G1∧· · ·∧Gm

Example: Leaf-labelled binary trees

E.g.

a
b c a

nd(lf(a),nd(lf(b),nd(lf(c),lf(a))))

The path predicate :

path(a, nd(lf(a),nd(lf(b),nd(lf(c),lf(d)))), [l])

path(b, nd(lf(a),nd(lf(b),nd(lf(c),lf(d)))), [r,l])

path(c, nd(lf(a),nd(lf(b),nd(lf(c),lf(d)))), [r,r,l])

path(a, nd(lf(a),nd(lf(b),nd(lf(c),lf(d)))), [r,r,r])

Logic program for path

Prolog notation

path(X,lf(X),[]).
path(X,nd(T,),[l|P]) :- path(X,T,P).
path(X,nd(,T),[r|P]) :- path(X,T,P).

Logical notation (with explicit universal quantification)

∀X . path(X,lf(X),[])

∀X,T,U,P . path(X,T,P) → path(X,nd(T,U),[l|P])

∀X,S,T,P . path(X,T,P) → path(X,nd(S,T),[r|P])

Example goal

Prolog notation

path(b,nd(lf(a),nd(lf(b),lf(c))),Q), path(Y,nd(lf(c),nd(lf(a),lf(b))),Q)

Logical notation (with explicit existential quantification)

∃Q,Y . path(b,nd(lf(a),nd(lf(b),lf(c))),Q)∧ path(Y,nd(lf(c),nd(lf(a),lf(b))),Q)

The next slide depicts (relevant parts of) the search tree for this
goal.

path(b,nd(lf(a),nd(lf(b),lf(c))),Q), path(Y,nd(lf(c),nd(lf(a),lf(b))),Q)

{Q=[l|Q′]}
path(b, lf(a), Q′),
path(Y, nd(lf(c), nd(lf(a), lf(b))), [l|Q′])
fail

{Q=[r|Q′]}
path(b, nd(lf(b), lf(c)), Q′),
path(Y, nd(lf(c), nd(lf(a), lf(b))), [r|Q′])

{Q′ =[l|Q′′]}
path(b, lf(b), Q′′),
path(Y, nd(lf(c), nd(lf(a), lf(b))), [r, l|Q′′])

{Q′′ =[]}
path(Y, nd(lf(c), nd(lf(a), lf(b))), [r, l])

path(Y, nd(lf(a), lf(b)), [l])

path(Y, lf(a), [])

{Y=a}
yes

{Q′ =[r|Q′′]}
...

Result of example query

The query

∃Q,Y . path(b,nd(lf(a),nd(lf(b),lf(c))),Q)∧ path(Y,nd(lf(c),nd(lf(a),lf(b))),Q)

succeeds, returning the result of the combined substitution

{ Q = [r|Q′] } { Q′ = [l|Q′′] } { Q′′ = [] } { Y = a }

which is the substitution

{ Q = [r,l], Y = a }

The resulting substitution provides witnessing terms for the
existentially quantified variables. That is, the following formula is a
logical consequence of the program.

path(b,nd(lf(a),nd(lf(b),lf(c))),[r,l])∧ path(a,nd(lf(c),nd(lf(a),lf(b))),[r,l])

Substitutions

A substitution is an assignment of terms to variables:

{ X1 = t1 , . . . , Xn = tn }

where the variables X1, . . . , Xn are all distinct.

Other notation often used for substitutions is:

{ X1\t1 , . . . , Xn\tn }
{ X1/t1 , . . . , Xn/tn }
{ t1/X1 , . . . , tn/Xn }

Note that the last two are mutually inconsistent.

Applying substitutions

A substitution { X1 = t1 , . . . , Xn = tn } is applied to a term t or a
formula F by replacing all the (free) occurrences of the variables
X1, . . . , Xn with the terms t1, . . . , tn respectively.

We write:

t { X1 = t1 , . . . , Xn = tn }
F { X1 = t1 , . . . , Xn = tn }

for the resulting substituted term and formula.

Technical restriction on substitutions

In logic programming, the application of the substitution
{ X1 = t1 , . . . , Xn = tn } can be restricted only to terms t and
formulas F for which

(Vars(t) ∪ {X1, . . . , Xn}) ∩ Vars(t1, . . . , tn) = ∅
(Vars(F) ∪ {X1, . . . , Xn}) ∩ Vars(t1, . . . , tn) = ∅

Informally, the restriction says that variables in the new terms
being substituted in must be “fresh”.

The restriction is technically motivated. We shall comment further
on the effects of this restriction in purple. Such comments are for
the benefit of the mathematically inquisitive.

Example

The result of the substitution

f(X, g(Y, h(X))) { X = h(Z) , Y = f(W, W) }

is the term
f(h(Z), g(f(W, W), h(h(Z))))

Note how the substitutions for X and Y are performed
simultaneously.

Example (continued)
Substitutions are performed in sequence in a composite
substitution:

f(X, g(W, h(X))) { X = h(Y) } { Y = f(Z, Z) }

(W is not allowed to be Y or Z here). The result of this is

f(h(f(Z, Z)), g(W, h(h(f(Z, Z)))))

The composite substitution { X = h(Y) } { Y = f(Z, Z) } has the
same effect (on terms not containing Y,Z) as the substitution:

{ X = h(f(Z, Z))}

We write:

{ X = h(Y) } { Y = f(Z, Z) } = { X = h(f(Z, Z)) }

Composition of substitutions

In general, given substitutions θ1 and θ2, one can (when there is no
clash of variables) define a composite substitution

θ1 θ2

that satisfies, for every term t (for which both sides are legitimate),

t (θ1 θ2) = (t θ1) θ2

Let {} be the identity substitution, which has no effect. That is
t {} = t.

Composition is an example of a (partial) monoid, i.e.,

{} θ = θ = θ {}
θ1 (θ2 θ3) = (θ1 θ2) θ3

Accordingly, we can write θ1 θ2 θ3 without ambiguity.

Generality of substitutions

We say that a substitution θ2 is more general than a substitution
θ1, notation

θ1 4 θ2

if there exists a substitution θ such that

θ1 = θ2 θ

Example

{ X = f(a) , Y = g(a, b) , W = f(b) } 4 { X = f(Z) , Y = g(Z, V) }

because

{ X = f(a) , Y = g(a, b) , W = f(b)} = { X = f(Z) , Y = g(Z, V)} { Z = a , V = b , W = f(b) }

Properties of generality

The relation 4 is a preorder, that is:

θ 4 θ

θ1 4 θ2 ∧ θ2 4 θ3 → θ1 4 θ3

We say that substitutions θ1 and θ2 are equivalent if

θ1 4 θ2 ∧ θ2 4 θ1

θ1 and θ2 are equivalent if and only if there exists a renaming, that
is, a substitution

{ X1 = Y1 , . . . , Xn = Yn }

where the variables Y1, . . . , Yn are all distinct, such that

θ1 = θ2 { X1 = Y1 , . . . , Xn = Yn }

Most general unifiers

A unifier for two terms t1, t2 is a substitution θ such that

t1 θ = t2 θ

We say that t1, t2 are unifiable if there exists a unifier.

Theorem.
If t1, t2 are unifiable then they have a most general unifier. That is,
there exists a unifier θ satisfying

for every unifier θ′, it holds that θ′ 4 θ .

Proof. Find θ using the algorithm in Programming Lecture 2.

Note that most general unifiers are unique up to equivalence.

Similarly, most general unifiers exist for unifiable formulas A1,A2.

Example search tree revisited

For the goal

path(b, nd(lf(b), lf(c)), Q′), path(Y, nd(lf(c), nd(lf(a), lf(b))), [r|Q′])

We unify the head atomic formula path(b, nd(lf(b), lf(c)), Q′) with the
right-hand-side of the rule

path(X, T, P) → path(X, nd(T, U), [l|P])

Giving the most general unifier

θ = { X = b , T = lf(b) , U = lf(c) , Q′ = [l|Q′′] , P = Q′′ } (*)

We replace the goal with

path(X, T, P) θ, path(Y, nd(lf(c), nd(lf(a), lf(b))), [r|Q′]) θ

= path(b, lf(b), Q′′), path(Y, nd(lf(c), nd(lf(a), lf(b))), [r, l|Q′′])

and we record θ restricted to goal variables { Q′ = [l|Q′′] }

Building the search tree in general

At each node in the search tree, the current goal is a list
G1, . . . ,Gm of atomic formulas.

1. If G1 unifies with some axiom B (a Prolog fact) in the
program then generate a new goal

G2θ, . . . ,Gmθ ,

where θ is the most general unifier of G1 and B.

Record the effect of the substitution θ on variables occuring in
G1, . . . ,Gm.

Building the search tree in general (continued)

2. If G1 unifies with the right-hand side B of an axiom (a Prolog
rule) of the form

A1 ∧ · · · ∧ Ak → B

in the program, then generate a new goal of the form:

A1θ, . . . ,Akθ,G2θ, . . . ,Gmθ

where θ is the most general unifier of G1 and B.
Again, record the effect of the substitution θ on variables
occuring in G1, . . . ,Gm.

The goal of the proof search procedure is to find a branch ending
in a leaf with the empty goal list. Whence Prolog returns the
composite substitution along this branch, which provides a
substitution witnessing the original query.

A subtle point

In the above, G1 is always unified with an atomic formula B, where
B is either itself one of the program axioms Fi , or it is the
right-hand side of a rule Fi . In either case, the variables in Fi are
implictly universally quantified. Similarly, the variables in
G1, . . . ,Gm are implicitly existentially quantified.

Because of this, it does not matter what the variables are called.
The meaning of the clause is unaffected by a different choice of
variable names.

However, for the unification in the proof search to work correctly, it
is essential that the variables names in Fi and G1, . . . ,Gm are
chosen so that they do not overlap.

This motivates the choice of variable names in the most general
unifier (*) on the Example Search Tree Revisited slide.

Prolog proof search

Prolog proof search is depth first:

I The search always moves to an unvisited (i.e., not previously
visited) child (i.e., immediately below) node of the current
node, whenever such a node exists.

I If there is no such node, the search backtracks to the most
recently visited node from which such an unvisited child node
is available.

Prolog proof search follows program order.

I Child nodes are visited in the order that the axioms (Prolog
rules) that determine the child node appear in the program
(i.e., from left to right in the trees as we are drawing them).

The strategy here is identical to that for propositional Prolog

Main points today

substitutions

unifiers and most general unifiers

search tree for definite clause predicate logic

Prolog proof search strategy

Appendix 1: Restriction on application of substitutions

We would like to have that

{ X = a , Y = a } 4 { X = Z , Y = Z }

via the expected composition of substitutions

{ X = a , Y = a } = { X = Z , Y = Z } { Z = a }

But if we were to allow the application of { X = Z , Y = Z } to
terms containing Z we would get, for example,

f(X, Y, Z) { X = Z , Y = Z } { Z = a } = f(Z, Z, Z) { Z = a }
= f(a, a, a)

f(X, Y, Z) { X = a , Y = a } = f(a, a, Z)

Appendix 2: Non-overlapping variables requirement

Consider the simple logic program

p(a,X)

and the simple query p(X,b) .

The query should succeed with substitution { X = a }

As written, the goal p(X,b) and the axiom p(a,X) do not unify,
because there is no consistent assignment for the variable X.

It is thus necessary to rename variables so that the variables in the
program do not overlap with variables in the goal.

The unification of p(X,b) and the axiom p(a, X′) does succeed
with most general unifier { X = a , X′ = b }, and so the correct
substitution { X = a } is returned.

