
Logic Programming 2013–14

Assignment 2: Theory

Model solution

1. (a) Program:

∀X. r(X, l(X))
∀X, Y, Z. r(X, Y) → r(X, t(Y, Z))
∀X, Y, Z. r(X, Z) → r(X, t(Y, Z))

Query:

∃Z, W. r(b, t(l(a), l(Z))) ∧ r(Z, t(l(c), l(W)))

(b) The search tree is:

r(b, t(l(a), l(Z))), r(Z, t(l(c), l(W)))

r(b, l(a)), r(Z, t(l(c), l(W)))
fail

r(b, l(Z)), r(Z, t(l(c), l(W)))

{Z = b}
r(b, t(l(c), l(W)))

r(b, l(c))
fail

r(b, l(W))

{W = b}
yes

The response of Prolog is yes with Z = b, W = b

(c) i. Prolog’s response to \+ r(a,l(b)) is yes.
This is because the search for r(a,l(b)) fails (since it dose not
unify with the head of any program clause).

ii. ¬r(a, l(b)) not a logical consequence of the program.
To see this we give a model of the program in which r(a, l(b)) is
true. Take the structure whose universe U is the 1-element set
{0}, which determines the interpretation of constants and func-
tion symbols. Interpet r(t1, t2) as true for all ground terms t1, t2.
This is easily seen to be a model and, by definition, r(a, l(b)) is
true.

iii. ¬r(a, l(b)) is true in the minimum Herbrand model.
A ground atomic formula is true in the minimum Herbrand
model if and only if it is provable from the program using a
complete proof system (e.g., SLD resolution). r(a, l(b)) is not
provable since it does not resolution-combine with any program
clause. (Thus r(a, l(b)) is false in the minimum Herbrand model
hence ¬r(a, l(b)) is true.)

1

2. (a) In this part, marks were given for correctness only, since justifications
were not requested. Nevertheless, justifications are provided below
for their explanatory benefit.

f1 is not monotonic, it has no fixed points and no least fixed point.
(To see this, since every monotonic function has a least fixed point
and every function with a least fixed point a fortiori has a least
fixed point, it is enough to show f1 has no fixed point. Assume for
contradiction that Y is a fixed point. Then 0 ∈ Y iff 0 6∈ f(Y) iff
0 6∈ Y (because Y = f(Y)), which is indeed a contradiction.)

f2 is not-monotonic, its fixed points are {0}, {1} and {2}, but it has
no least fixed point.
(Justification: For each Y ⊆ X, it holds that f(Y) is a singleton set
(i.e., contains exactly one element). So the only possible fixed points
are {0}, {1} and {2}, and these are indeed all fixed points. Since
none of the fixed points is a subset of another there is no least fixed
point. Hence the function is not monotone.)

f3 is not-monotonic, its only fixed point is {1}, this is a least fixed
point.
(Justification: by the definition of the function, any fixed point must
contain 1 and cannot contain 0 or 2. The only possibility is thus {1},
which is indeed a fixed point. Since the fixed point is unique it is
trivially least. The function is, however, not-monotonic since, e.g.,
{0, 1} ⊆ {0, 1, 2} but f3({0, 1}) = {1, 2} 6⊆ {1} = f3({0, 1, 2}).)
f4 is monotonic, its fixed points are ∅, {0, 2}, {1}, {0, 1, 2}, the least
fixed point is ∅.
(Proof of monotonicity: Suppose Y ⊆ Y ′. To prove f4(Y) ⊆ f4(Y ′),
suppose z ∈ f4(Y). Then z = 2−y for some y ∈ Y . Since Y ⊆ Y ′, we
also have y ∈ Y ′ hence 2− y ∈ f4(Y ′), i.e., z ∈ f4(Y ′) as required.)

(b) The function f is

f(Y) = Y ∪ {a} ∪ {b | a, c ∈ Y } ∪ {c | b, d ∈ Y }
∪ {d | a, e ∈ Y } ∪ {e | a ∈ Y } ∪ {j | b, c ∈ Y }

This reaches a fixed-point via

f(∅) = {a}
f2(∅) = {a, e}
f3(∅) = {a, d, e} = f4(∅)

The least fixed point is {a, d, e}.
(c) Given a propositional definite-clause program, the decision procedure

constructs the function f and then calculates the iterates fn(∅) until
the least fixed point is reached. It then checks whether a query atom
q belongs to the least fixed point and returns yes if it does and no
otherwise.

2

(d) Calculating the least-fixed-point is not a possibility for predicate
logic, where the analogous procedure would have to construct the set
of all ground atomic formulas true in the minimum Herbrand model,
which is infinite. Proof search, in contrast, applies to predicate logic
as well as to propositional logic.
(Other answers are acceptable here. E.g., proof search gives the
programmer control over search and can be adapted to interact with
imperative programming features.)

3

