Today

- Prolog interpreter algorithms

- Beyond Pure Prolog: “meta”-predicates

- Closed World Assumption & Negation as Failure.
Algorithms for definite clause interpreter

We have seen the outline of how inference in definite clause logic can be automated. Let’s spell out a bit more concretely some of the key procedures involved.

These will be given by Haskell functions, with comments. Haskell is a functional programming language – see overview material\(^1\).

An implementation of a basic Prolog interpreter in Haskell is also available\(^2\).

Features in common with other languages, such as parsing, pretty printing, input/output must be dealt with, but we concentrate on the key steps in inference and search.

Acknowledgements to Mark Jones for the Haskell code.

\(^1\) http://www.inf.ed.ac.uk/teaching/courses/inf1/fp/#info

\(^2\) http://darcs.haskell.org/nofib/real/prolog
Representing statements

For an interpreter, there is no need to make a distinction between function symbols and predicates. Here are the basic data-types:

type Id = (Int,String)
 -- variable identifiers, Int allows renaming

type Atom = String
 -- for constant, fn symbol or predicate

data Term = Var Id | Struct Atom [Term]
 -- Var, Struct are constructors for pattern matching

data Clause = Term :== [Term]
 -- Clause is written as " tm :== [tm,tm,...] "

data Database = Db [(Atom,[Clause])]
 -- The program
Substitutions

Since haskell is a functional language, in which functions are first-class objects, substitutions can be treated directly as functions from (some) variables to terms.

```haskell
--- Substitutions:

type Subst = Id -> Term

-- substitutions are represented by functions mapping variable ids to terms.

-- apply s extends the substitution s to a function mapping terms to terms
-- nullSubst is the empty substitution which maps every identifier to the
-- same identifier (as a term).
-- i ->> t is the substitution which maps the variable id i to the term t,
-- but otherwise behaves like nullSubst.
-- s1 @@ s2 is the composition of substitutions s1 and s2
```
Substitution Operations

apply :: Subst -> Term -> Term
apply s (Var i) = s i
apply s (Struct a ts) = Struct a (map (apply s) ts)
 -- apply the substitution recursively to every argument

nullSubst :: Subst
nullSubst i = Var i

(->>) :: Id -> Term -> Subst
(->>) i t j | j==i = t -- case j==i
 | otherwise = Var j -- any other case

(@@) :: Subst -> Subst -> Subst
s1 @@ s2 = (apply s1) . s2
 -- "." is function composition; (f . g) x = f(g(x))
Unification

with occurs check; success is a singleton list with mgu, failure is empty list.

unify :: Term -> Term -> [Subst]
 -- unify takes two terms, and returns a list of substitutions

unify (Var x) (Var y)
 = if x==y then [nullSubst] else [x->>Var y]

unify (Var x) t2
 = [x ->> t2 | not (x ‘elem‘ varsIn t2)]
 -- [] if x is in t2, otherwise [x ->> t2]

unify t1 (Var y)
 = [y ->> t1 | not (y ‘elem‘ varsIn t1)]

unify (Struct a ts) (Struct b ss)
 = [u | a==b, u<-listUnify ts ss]
 -- [] if a /=b, otherwise call listUnify on args
Unification ctd

listUnify :: [Term] -> [Term] -> [Subst]

listUnify [] [] = [nullSubst]
listUnify [] (r:rs) = [] -- fail if lists of different length
listUnify (t:ts) [] = []
listUnify (t:ts) (r:rs) =
 [u2 @@ u1 | -- compose subs u1, u2, where
 u1<-unify t r, -- u1 is unifier of t,r
 u2<-listUnify (map (apply u1) ts)
 (map (apply u1) rs)]
 -- apply u1 to all remaining arguments,
 -- and call recursively to get u2
The Proof Search Space

data Prooftree = Done Subst | Choice [Prooftree]
 -- Done [] is failure, Done [s] succeeds with substitution s,
 -- Choice is a list of open possible derivations

-- prooftree constructs a suitable proof search tree for a specified goal
-- since Haskell is lazy, doesn’t expand trees here!
prooftree :: Database -> Int -> Subst -> [Term] -> Prooftree
prooftree db = pt
 where pt :: Int -> Subst -> [Term] -> Prooftree
 -- proof depth, result so far, list of goals
 pt n s [] = Done s
 pt n s (g:gs) = Choice [pt (n+1) (u@@s) (map (apply u) (tp++gs))
 | (tm:==tp)<-renClauses db n g, u<-unify g tm]
 -- for each clause with head unifiable against first goal,
 -- get new goal list: add clause body at FRONT of goals
 -- (to get depth first), and apply unifier; also
 -- update accumulated substitution
Proof Search

-- search performs a depth-first search of a proof tree, producing the list
-- of solution substitutions as they are encountered.
search :: Prooftree -> [Subst]
search (Done s) = [s]
 -- found a solution
search (Choice pts) = [s | pt <- pts, s <- search pt]
 -- look successively at each tree in pts,
 -- call search recursively on it

prove :: Database -> [Term] -> [Subst] -- initialise the search
prove db = search . prooftree db 1 nullSubst

This is the basic engine to find the first solution to a query. An interpreter that
deals with subsequent solutions, and with cuts, is not much more complicated;
see Engine.hs for the extended interpreter.
Meta-language

Thus we get two languages, one describing the other. We say that the meta-language is used to talk about the object language.

Examples

English as meta-language, with French as object language:

The word “poisson” is a masculine noun.

English as meta-language, with English as object-language:

It is hard to understand “Everything I say is false”.
Examples ctd

Prolog contains a mixture of object-level and meta-level statements.

father(a,b).
functor(father(a,b),father,2).
var(X).

object-level
meta-level
meta-level

It is better to keep these uses distinct.

Notice that \texttt{var/1} does not function according to Prolog's declarative semantics:
Compare:

|- var(X),X=2.
X = 2 ?

yes
|- X=2, var(X).

no

Remember, Prolog comma is just conjunction – the two queries are logically equivalent, so the answers should be the same.

So this behaviour is inconsistent with the declarative reading.
Prolog in Prolog

Take the program:

father(a,b).

ancestor(X,Y) :- father(X,Y).
ancestor(X,Y) :- father(X,Z), ancestor(Z,Y).

We can write a description of Prolog programs in Prolog:

clause(father(a,b), true).
clause(ancestor(X,Y), father(X,Y)).
clause(ancestor(X,Y),
 (father(X,Z), ancestor(Z,Y))).
Status of meta-predicates

This treatment of Prolog in Prolog also breaks the declarative reading.

The statement `clause(father(a,b), true)` cannot be parsed in definite clause logic so that `father` is a predicate – it can only be a function symbol.

One possibility is to consider that we are dealing with two languages – an object language in which `father` is a predicate, and a meta-language which talks about the object language, and where `clause` is a predicate.

This make it hard to understand in a declarative way programs where the two languages are mixed. The language Goedel\(^3\) developed a systematic approach to logic programming with two interconnected languages.

\(^3\)http://www.scs.leeds.ac.uk/hill/GOEDEL/expgoedel.html
Negation by failure

Prolog does not distinguish between being unable to find a derivation, and claiming that the query is false; that is, it does not distinguish between the “false” and the “unknown” values we have above.

When we take a Prolog response of no. as indicating that a query is false, we are making use of the idea of negation as failure: if a statement cannot be derived, then it is false.

Clearly, this assumption is not always valid! If some information is not present in the program, failure to find a derivation should not let us conclude that the query is false – we just don’t have the information to decide.
Knowing the answers

A good situation to be in is where we have enough information to answer any possible query. If we know

\[
\text{poor}(\text{jane})
\]

\[
\text{poor}(\text{jane}) \rightarrow \text{happy}(\text{jane})
\]

\[
\text{happy}(\text{fred})
\]

we do not know enough to answer the query

\[
? \leftarrow \text{poor}(\text{fred})
\]
Complete Theories

We say a theory T is complete (for ground atoms) iff for every query (like $\text{poor}(fred)$) we can conclude either $\text{poor}(fred)$ or $\neg\text{poor}(fred)$.

A ground atom is a statement of the form $P(t_1, \ldots, t_n)$ where there are no variables in any t_i; so it is a basic statement about particular objects.

Our example T is not complete in this sense; we can extend it to make a complete T using the Closed World Assumption (CWA). The idea is to add in the negation of a ground atom whenever the ground atom cannot be deduced from the KB.

This makes the assumption that

all the basic positive information about the domain follows from what is already in T.
CWA as an augmented T

We can define the effect of the CWA using the standard logic we saw earlier. Given a T written in first-order logic, we augment T to get a bigger set of formulas $CWA(T)$; the extra formulas we add are:

$$X_T = \{ \neg p(t_1, \ldots, t_n) : \text{not } T \vdash p(t_1, \ldots, t_n) \}$$

Now we can define what it is to follow from T using CWA: a formula Q follows from T using the CWA iff

$$T \cup X_T \models Q$$
Example

In the example, we can now conclude $\neg \text{poor}(fred)$, since from the original T we cannot show $\text{poor}(fred)$. Thus we have $\neg \text{poor}(fred)$ is in X_T.

In fact, in this case

$$X_T = \{ \neg \text{poor}(fred) \},$$

assuming there are no other constants in the language except $jane, fred$. In this case, we can compute the set X_T by looking at all possibilities.

One use of CWA is in looking at a failed Prolog query of the form

?- property(t1,t2).

as saying that the query is in fact false.
Summary

• Prolog interpreter algorithms

• Beyond Pure Prolog: “meta”-predicates

• Closed World Assumption