LFD1 Problem Set for Week 4
Solutions

Tutor: Michael Schouten

Question 1
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To evaluate E(X) = _j;o T 5(%5*) 4o
make the substitution z = =% = dz = Zdz and rewrite the integral as:
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Denote N(z) as \/%e_%zz and recognize that this is the p.d.f for a Gaussian
withp=0and 0> =1= [ N(z)dz=1
—o0

Using this notation and rearranging terms yields:
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where C is a constant that does not depend on z. As noted above, the integral
on the left evaluates to 1. The integral on the right can be expressed as:
0 b
lim ze 2 dz + lim [ ze 2% dz
a——o0 b—oo

a 0

where both terms in the expression evaluate to 0. Hence:

E(X)=p-14+C,-0=p

Question 2

To evaluate Var(X)=E(X —p)? = [ (z — M)Q\/;rTe_%“;“)zdx
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begin by using the following relation:

Var(X) = BE(X?) - (B(X))?
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From question 1, (E(X))” = u?. ToevauluatceE(X2)27{O .’172\/2;76 5 (%) dz

make the same substitution as in question 1, i.e. z = *#, and rewrite the
integral as:
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In question 1 it was shown that the first two integrals evaluate to 1 and 0
respectively. It can readily be shown that the third integral evaluates to 1 using
integration by parts!. Hence:

Var(X) = [E(X?)] - (B(X))? = W 1-C-0+0% 1] —p? =07

Question 3
The likelihood of the data L(x|u,0?) is specified as:
P
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L(x|u,0?)

and the log likelihood,?, is therefore

U(xl|n, 0?)
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Since p is not known, replace it with an estimate, fi. To find the value

of fi that maximizes ¢ (i.e. the maximum likelihood estimate of u), solve the
appropriate first order condition:
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1Recall that the formula for this method is fudv = uv — fvdu. Let u = z and dv =
—1/222 |
. +fN(z)dz The

integral on the right evaluates to 1. You can use L’Hopital’s Rule to show that the left term
is 0.

se—1/22% L 4 — —N(z) The integral can then be written as —ze




Similarly, to get the maximum likelihood estimate for o2:
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Question 4

Assume k Classes where observed data from each class is distributed from a
Gaussian with unknown mean and variance. Maximum likelihood estimates for
i, o and p for Class i:

For two classes, the probability that a particular data point, x, belongs to class
1 is:
p(z|C1)p1
p(z|C1)p1 + p(z[C2)p2

where

p(z|Ci) =

1 1z —w\’
exp | —= Tk
\/2mo? 2 o;
Applying the formulae above to the data given in the question,
fiy = .26, iy = 8625, 02 = .0149, 02 = 0092, p; = .7143, py = .2857

and the probability the .6 belongs to C is therefore .6305.



Question 5

The decision boundary is given by the value(s) of x that satisfy:
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Taking logs of both sides and rearranging terms yields:
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This will simply to the following quadratic equation:

ar?+br+¢=0

where

a=o}— 03

b= 2(03m — 07 p2)

g
¢ = 022 + %3 — 20703 (gj(,;)

The solutions are given by the quadratic formula:
—b+ Vb2 — dac
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Hence, if b*> — 4ac > 0 there will be two decision boundaries (consider the case
where 411 is close to g and o7 is large relative to 03).



