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Nearest Neighbour Methods

Classification

I Training data with attributes x and class label t .
I x could represent the presence or absence of a set of

words in a web page, and t could be whether Tim Jericho
is interested in that particular web page.

I Nearest neighbour classification: Things which are similar
in x-space should have the same class label with a high
probability.

I This is a smoothness assumption.
I Not going to build an explicit model of the data in this case.
I Discriminative approach.
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Similarity

I How are two data points similar?
I Define a dissimilarity function between data points. Usually

this involves defining some metric or distance measure
such as the Euclidean distance:

d(x, y) = (x− y)T (x− y)

I Possible to be more general. For example one attribute
may be more important than another attribute, and should
be weighted differently in the distance calculation.
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Nearest Neighbour

I Have training data (xi , ti), i = 1, 2, . . . , n.
I Have some test point x we wish to classify.
I Calculate the dissimilarity between the test point x and the

training points.
I Find which training point k which is ’closest’ to the test

point. In other words find the minimum dissimilarity of
those you calculated.

I Set the classification t for the test point to be identical to
that of the nearest training point k .

I In the case of dissimilarity ties, pick the classification which
is most common amongst those nearest neighbours.
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Example
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I Three classes. Training set. Test point ’?’.
I Nearest training point is classified as ’2’.
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Decision boundary
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I Where the classification label given by the algorithm flips
from one class to another

I Figure: the decision boundary for the nearest neighbour
method is piecewise linear.
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Problems

I Sensitive to outliers.
I Store all the data.
I Cost of calculating distances.
I Invariance to linear transformation.
I No measure of certainty.
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K Nearest Neighbours (KNN)

I Have training data (xi , ti), i = 1, 2, . . . , n.
I Have some test point x we wish to classify.
I Calculate the dissimilarity between the test point x and the

training points.
I Find the K training points k1, k2, . . . kK which is ’closest’ to

the test point.
I Set the classification t for the test point to be the most

common of the K nearest neighbours.
I Solves the problem of outliers
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Choosing K

I K is dependent on the ’smoothness’ of the classification
model we have in mind.

I Large K - everything classified the same.
I Small K - individual points (including outliers) can have

significant effects.
I Varying K - varying smoothness of classification.
I Set using generalisation performance. Set aside a

validation data set, and test performance on that dataset
for different values of K .
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Examples

I Comparison with class-conditional models.
I Handwritten character example - see notes.
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Summary

I Distance between data points.
I Nearest neighbour calculation.
I Nearest neighbour classification.
I Decision boundaries.
I Outliers.
I K Nearest Neighbours.
I Setting K using generalisation performance.
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