
Learning from Data
Mixture Models

Copyright David Barber 2001-2004.
Course lecturer: Amos Storkey

a.storkey@ed.ac.uk
Course page : http://www.anc.ed.ac.uk/∼amos/lfd/

1

2

It is not uncommon for data to come in “clusters”. For example, consider
the problem of trying to learn the characteristics of handwritten digits, 0-9.
Intuitively, examples of 2’s look quite similar, as do examples of 3’s. It is
rare that a 2 will look like a 3. This suggests that all the examples of 2’s
form a cluster of points in the high dimensional space of the data, somewhat
separated from clusters of representing other digits. Of course, if there were
never any overlap of these clusters, life would be easy since classification
would be straightforward.

Consider the case where we do not know any class labels and just have a
dataset {xµ, µ = 1, . . . , P}. Initially, we will think of using mixture models
to cluster data in an unsupervised way – that is, simply to make a model of
data which reflects our belief that the data has clusters. Why is this useful?
Compression of data is one obvious example. Once we have a good model
of data, we can always use it for compression.

1 Data Clusters

Consider the one dimensional data distribution p(x) depicted below: It is

p(x|i=3)p(x|i=2)p(x|i=1)

clear that the black dots, which represent the one dimensional data values
are naturally clustered into three groups. Hence, a reasonable model of this
data would be

p(x) = p(x|1)p(1) + p(x|2)p(2) + p(x|3)p(3) =
3∑

i=1

p(x|i)p(i) (1.1)

where p(x|i) is the model for the data in cluster i, and
∑

i p(i) = 1.

If we believe that data lies around a number of clusters, we can model eachMixture Models
cluster i by a distribution p(x|i). To complete the model for the whole
dataset, we need to describe how much weight/probability mass to attach
to each cluster, p(i). The complete data set is described by the distribution

p(x) =
∑

i

p(x|i)p(i) (1.2)

where p(i) is the probability that component/cluster i contributes to mod-
elling the data.

2 Gaussian Mixture Models

In Gaussian mixture models we use the probability density functions,

p(x|i) =
1√

det(2πΣi)
exp

(
−1

2
(x− µi)

T Σ−1
i (x− µi)

)
(2.1)

The idea is to place ‘blobs’ of probability mass in the space to cover the
data well, see fig(1).

3

Figure 1: Gaussian Mixture Models place blobs of probability mass in the
space. Here we have 4 mixture components in a 3 dimensional space. Each
mixture has a different covariance matrix and mean.

2.1 Training Algorithm

Maximum likelihood training using the EM algorithm is one way to train
mixture models. The derivation is straightforward but beyond the scope of
these lectures. However, the resulting algorithm for optimising this model
is straightforward and intuitive. The following algorithm is used to fit a
mixture of M Gaussians (that is, to find their means µi and covariances Σi,
i = 1, . . . ,M) to data xn, n = 1, . . . P

1. Initialise the means and covariance matrices to some values. One good
choice is to set the means to a random subset of the training points,
and to set the covariance matrices to be large multiples of the identity
matrix. Set the mixing coefficients p(i) to be 1/M .

2. Update the means and covariance matrices according to

µnew
i =

∑P
n=1 p(i|xn)xn

∑P
n=1 p(i|xn)

(2.2)

Σnew
i =

∑P
n=1 p(i|xn)(xn − µi)(xn − µi)T

∑P
n=1 p(i|xn)

(2.3)

p(i)new =
1
P

P∑
n=1

p(i|xn) (2.4)

where

p(i|xn) =
p(xn|i)p(i)∑M
i=1 p(xn|i)p(i)

(2.5)

In all the expressions above, we use equation (2.1) to compute the probabil-
ities p(xn|i). The probabilities p(i|xn) are called the ‘responsibilities’, since
they effectively measure how responsible the ith mixture is in representing
the data point xn. Step 2 above is repeated until convergence.

These equations are intuitive since, for example, equation (2.2) says essen-
tially the following: go through the dataset, and find which datapoints are
close to mixture component i (that is, those data points for which the re-
sponsibilities p(i|xn) are high) – the mean of cluster i is then the mean of
those data points for which cluster i is responsible.

4

If we wish that each Gaussian blob is isotropic, (covariance matrix is a
multiple of the identity), then we only need to estimate the variance of the
Gaussian. In this case, we simply replace equation (2.3) with

(σ2
i)new =

∑P
n=1 p(i|xn)(xn − µi)T (xn − µi)∑M

n=1 p(i|xn)
(2.6)

There is a problem with the above algorithm – it has a tendency to makeWarning!
very narrow width Gaussians around single data points. It is customary
to prevent this by disallowing very small values of σ2

i . For the case of
anisotropic Gaussians, a reasonable criterion would be to stop updating the
covariance Σi if any of its eigenvalues go below a set threshold.

An example of this algorithm in action is shown in fig(2), which fits a mixtureAn example
of 10 isotropic Gaussians to a set of two dimensional data. The data was
fitted using the code below. Note that the code is not heavily vectorised for
readability.

(a) 1 iteration (b) 20 iterations (c) 50 iterations (d) 100 iterations

Figure 2: Training a mixture of 10 Gaussians (a) If we start with large variances for the Gaussians, even
after one iteration, the Gaussians are centred close to the mean of the data. (b) The Gaussians begin to
separate (c) One by one, the Gaussians move towards appropriate parts of the data (d) The final converged
solution. Note that here, the Gaussians were constrained so that the variances could not go below 0.01.

5

% demo for fitting mixture of isotropic Gaussians

%make an annulus of data :

l = 0.2; r1 = 0.5; for r = 1:50

rad = r1 + rand*l; theta = rand*2*pi; X(1,r) = rad*cos(theta); X(2,r) = rad*sin(theta);

end

h = 5; % number of mixtures

d = size(X,1); % dimension of the space

n = size(X,2); % number of training patterns

Smin = 0.001; % minimum variance of Gaussians

r = randperm(n); M = X(:,r(1:h)); % initialise the centres to random datapoints

S = 100*ones(1,h); % initialise the variances to be large

P = ones(1,h)./h; % intialise the component probilities to be uniform

for its = 1:150 % number of iterations

for i = 1:h

for k = 1:n

v = X(:,k) - M(:,i);

Q(k,i) = exp(-0.5*(v’*v)/S(i)).*P(i)./sqrt((S(i))^d);

end

end

su = sum(Q,2);

for k =1:n

Q(k,:) = Q(k,:)./su(k); % responsibilities p(i|x^n)

end

for i = 1:h % now get the new parameters for each component

N(i) = sum(Q(:,i));

Mnew(:,i) = X*Q(:,i)./N(i);

Snew(i) = (1/d)*sum((X - repmat(Mnew(:,i),1,n)).^2)*Q(:,i)./N(i);

if Snew(i) < Smin % don’t decrease the variance below Smin

Snew(i) = Smin;

end

end

Pnew = N; Pnew = Pnew./sum(Pnew);

S = Snew; M = Mnew; P = Pnew; % update the parameters

end

3 K Means

A non-probabilistic limit of fitting Gaussian mixtures to data is given by
the K means algorithm, in which we simply represent an original set of P
datapoints by K points.

3.1 The algorithm

1. Initialise the centres µi to K randomly chosen datapoints.

2. For each cluster mean, j, find all the x for which cluster j is the nearest
cluster. Call this set of points Sj . Let Nj be the number of datapoints

6

in set Sj .

3. Assign

µj =
1

Nj

∑

x∈Sj

x (3.1)

We then iterate steps 2 and 3 above until some convergence criterion.

The code below implements this algorithm.

% demo for K Means

x = [randn(2,50) 5+randn(2,50) (repmat([-4 4]’,1,50)+randn(2,50))]; % 150 2-dim datapoints

K = 3; % number of clusters

r = randperm(size(x,2));

m(:,1:K) = x(:,r(1:K)); % initialise the clusters to K randomly chosen datapoints

mold =m;

for its = 1: 100 % maximum number of iterations

for p = 1:size(x,2) % calculate the distances (this could be vectorised)

for k = 1:K

v = x(:,p) - m(:,k); d(k,p) = v’*v;

end

end

[a,b]=min(d); % find the nearest centres

for k = 1:K

if length(find(b==k))>0

m(:,k) = mean(x(:,find(b==k))’)’;

end

end

if mean(sum((m-mold).^2)) < 0.001; break; end; mold =m; % termination criterion

end

cla; plot(x(1,:),x(2,:),’.’); hold on;

plot(m(1,:),m(2,:),’rx’,’markersize’,15);

An example is given in fig(3) in which we represented 150 datapoints using
3 clusters.

Note that the Kmeans algorithm can be dervived as the limit σ → 0 for
fitting isotropic Gaussian mixture components.

3.2 Uses of K Means

The K means algorithm, despite its simplicity is very useful. Firstly, it
converges extremely quickly and often gives a reasonable clustering of the
data, provided that the centres are initialised reasonably (using the above
procedure for example). We can use the centres we found as positions in
which to place basis function centres in the linear parametric models chapter.

7

−6 −4 −2 0 2 4 6 8
−4

−2

0

2

4

6

8

10

Figure 3: Result of fitting K = 3 means to 150 two dimensional datapoints.
The means are plotted as crosses.

4 Classification using Mixture Models

One popular use of mixture models is in classification. Consider the case in
which we have two classes, 1 and 2. We can fit a Gaussian Mixture model
to each class. That is, we could fit a mixture model to the data from class
1 :

p(x|c = 1) =
K∑

k=1

p(x|k, c = 1)p(k|c = 1) (4.1)

and a mixture model to the data from class 2. (One could use a different
number of mixture components for the different classes, although in practice,
one might need to avoid overfitting one class more than the other. Using the
same number of mixture components for both classes avoids this problem.)

p(x|c = 2) =
K∑

k=1

p(x|k, c = 2)p(k|c = 2) (4.2)

So that each class has its own set of mixture model parameters. We can
then form a classifier by using Bayes rule :

p(c = i|x) =
p(x|c = i)p(c = i)

p(x)
(4.3)

Only the numerator is important in determining the classification since the
denominator is the same for the case of p(c = 2|x). This is a more powerful
approach than our original approach in which we fitted a single Gaussian
to each digit class. Using more Gaussians enables us to get a better model
for how the data in each class is distributed and this will usually result in a
better classifier.

