
Learning from Data

Layered Neural Networks

Copyright David Barber 2001-2004.

Course lecturer: Amos Storkey

a.storkey@ed.ac.uk

Course page : http://www.anc.ed.ac.uk/∼amos/lfd/

1

2

x1 x2 x3 x4 x5

y

x1 x2 x3 x4 x5

y1 y2

Figure 1: (Left) A simple perceptron. We use square boxes to emphasise the
deterministic nature of the network. (Right) We can use two perceptrons
with weights w1 and w2 to model a mapping (x1, x2, x3, x4, x5)→ (y1, y2)

1 Sequential Layered Processing

In natural systems, information processing is often found to occur in stages.
For example, in human vision, the light falling on the retina is transformed
first in a non-linear logarithmic fashion. Local parts of the image are then
“recognised” by neurons specialised to respond to particular local image
patterns. The information from these “feature” extraction neurons is then
fed into subsequent layers which correspond to higher cognitive functions.
Artificial layered networks mimic such sequential processing.

In this chapter, we shall consider that each “neuron” or processing unit com-
putes a deterministic function of its input. In this sense :Neural Networks
are graphical representations of functions.

2 The Perceptron

The perceptron is essentially just a single neuron like unit that computes a
non-linear function y of its inputs x,

y = g

∑

j

wjxj + µ

 = g
(
wTx + µ

)
(2.1)

where the weights w encode the mapping that this neuron performs. Graph-
ically, this is represented in fig(1). We can consider the case of several
outputs as follows:

yi = g

∑

j

wijxj + µi

and can be used to model an input-output mapping x→ y, see fig(1)(right).
Coupled with an algorithm for finding suitable weights, we can use a per-
ceptron for regression. Of course, the possible mappings the perceptron
encodes is rather restricted, so we cannot hope to model all kinds of com-
plex input-output mappings successfully. For example, consider the case
in which g (x) = Θ (x) – that is, the output is a binary valued function
(Θ(x) = 1 if x ≥ 0, Θ(x) = 0 if x < 0) . In this case, we can use the
perceptron for binary classification. With a single output we can then clas-
sify an input x as belonging to one of two possible classes. Looking at the
perceptron, equation (2.1), we see that we will classify the input as being
in class 1 if

∑

j wjxj + µ ≥ 0, and as in the other class if
∑

j wjxj + µ < 0.
Mathematically speaking, the decision boundary then forms a hyperplane
in the x space, and which class we associate with a datapoint x depends on
which side of the hyperplane this datapoint lies, see fig(2).

3

(a) A linearly separable
problem

(b) A non-linearly separa-
ble problem

Figure 2: Linear separability: The data in (a) can be classified correctly
using a hyperplane classifier such as the simple perceptron, and the data
is termed linearly separable. This is not the case in (b) so that a simple
perceptron cannot correctly learn to classify this data without error.

x1 xn

l1 lr

h1 hk

m1 ms

y1 ym

Figure 3: A multilayer perceptron (MLP) with multiple hidden layers, mod-
eling the input output mapping x→ y. This is a more powerful model than
the single hidden layer, simple perceptron. We used here boxes to denote
the fact that the nodes compute a deterministic function of their inputs.

3 Multilayer Perceptrons

If the data that we are modeling is not linearly separable, we have a problem
since we certainly cannot model this mapping using the simple perceptron.
Similarly, for the case of regression, the class of function mappings that
our perceptron forms is rather limited, and only the simplest regression
input-output mappings will be able to be modelled correctly with a simple
perceptron. These observations were pointed out in 1969 by Minsky and
Papert and depressed research in this area for several years. A solution
to this perceived problem was eventually found which included “hidden”
layers in the perceptron, thus increasing the complexity of the mapping.
Each hidden node computes a non-linear function of a weighted linear sumTransfer Functions
of its inputs. The specific non-linearity used is called the transfer function.
In principle, this can be any function, and different for each node. However,
it is most common to use an S-shaped (sigmoidal) function of the form
σ(x) = 1/(1 + e−x). This particular choice is mathematically convenient
since it has the nice derivative property dσ(x)/dx = σ(x)(1−σ(x)). Another
popular choice is the sigmoidal function tanh(x). Less “biological” transfer

functions include the Gaussian, e−
1

2
x2

, see fig(4). For example, in fig(3), we

4

−10 −5 0 5 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

sigma(x)
tanh(x)
exp(−0.5 x2)

Figure 4: Common types of transfer functions for neural networks.

x1 x2

h1 h2

y

Figure 5: A MLP with one hidden layer.

plot a simple single hidden layer function,

h1 = σ
(
wT

1 x + b1
)
, h2 = σ

(
wT

2 x + b2
)
, y = r(vTh + b3) (3.1)

where the adaptable parameters are θ = {w1,w2,v, b1, b2, b3}. Note that
the output function r(·) in the final layer is usually taken as the idendity
function r(x) = x in the case of regression – for classification models, we
use a sigmoidal function. The biases, b1, b2 are important in shifting the
position of the “bend” in the sigmoid function, and b3 shifts the bias in the
output.

Generally, the more layers that there are in this process, the more complex
becomes the class of functions that such MLPs can model. One such example
is given in fig(3), in which the inputs are mapped by a non-linear function
into the first layer outputs. In turn, these are then fed into subsequent layers,
effectively forming new inputs for the layers below. However, it can be shown
that, provided that there are sufficiently many units, a single hidden layer
MLP can model an arbitrarily complex input-output regression function.
This may not necessarily give rise to the most efficient way to represent a
function, but motivates why we concentrate mainly on single hidden layer
networks here.

3.1 Understanding Neural Networks

There are a great number of software packages that automatically set up
and train the networks on provided data. However, following our general
belief that our predictions are only as good as our assumptions, if we really
want to have some faith in our model, we need to have some insight into
what kinds of functions neural networks are.

The central idea of neural networks is that each neuron computes some

5

−1
−0.8

−0.6
−0.4

−0.2
0

0.2
0.4

0.6
0.8

1

−1

−0.5

0

0.5

1

0

0.5

1

x(1)

x(2)

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

0

0.2

0.4

0.6

0.8

1

x(1)
x(2)

Figure 6: The output for a single neuron, w = (−2.5, 5)T , b = 0. Left: The
network output using the transfer function exp(−0.5x2). Right: using the
transfer function σ(x). Note how the network output is the same along the
direction perpendicular (orthogonal) to w, namely w⊥ = λ(2, 1)T .

function of a linear combination of its inputs:

h(x) = g(wTx + b) (3.2)

where g is the transfer function, usually taken to be some non-linear func-
tion. Alternatively, we can write

h(x) = g(a(x)) (3.3)

where we define the activation a(x) = wTx + b. The parameters for the
neuron are the weight vector w and bias b. Each neuron in the network
has its own weight and bias, and in principle, its own transfer function.
Consider a vector w⊥ defined to be orthogonal to w, that is, wTw⊥ = 0.
Then

a(x + w⊥) =
(
x + w⊥

)T
w + b (3.4)

= xTw + b+
(
w⊥
)T

w
︸ ︷︷ ︸

0

(3.5)

= a(x) (3.6)

Since the output of the neuron is only a function of the activation a, this
means that any neuron has the same output along directions x which are
orthogonal to w. Such an effect is given in fig(6), where we see that the
output of the neuron does not change along directions perpendicular to w.
This kind of effect is general, and for any transfer function, we will always
see a ridge type effect. This is why a single neuron cannot achieve much
on its own – essentially, there is only one direction in which the function
changes (I mean that unless you go in a direction which has a contribution
in the w direction, the function remains the same). If the input is very high
dimensional, we only see variation in one direction.

In fig(7) we plot the output of a network of two neurons in a single hiddenCombining Neurons
layer. The ridges intersect to produce more complex functions than single
neurons alone can produce. Since we have now two neurons, the function
will not change if we go in a direction which is simultaneously orthogonal
to both w1 and w2. In this case, x is only two dimensional, so there is no

6

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

0

0.5

1

1.5

2

x(1)

x(2)

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1

0

0.5

1

1.5

2

x(1)

x(2)

Figure 7: The combined output for two neurons, w1 = (−5, 10)T , b2 =
0, w2 = (7, 5)T , b2 = 0.5. The final output is linear, with weights v =
(1, 1)T and zero bias. Left: The network output using the transfer functions
exp(−0.5x2). Right: using the transfer function σ(x) – this is exactly the
function in equation (3.1) with r the identity function.

direction we can go along that will be orthogonal to both neuron weights.
However, if x where higher dimensional, this would be possible. Hence, we
now have variation along essentially two directions.

In general, if we had K neurons interacting in a single hidden layer in
this way, we would essentially have a function which can vary along K
independent directions in the input space.

4 Training multi-layered perceptrons

To a statistician, neural networks are a class of non-linear (adaptive basis
function) models. Let us consider, for convenience, only a single output
variable y. Given a set of input-output pairs, D = {(xµ, yµ), µ = 1, . . . , P},
how can we find appropriate “weights” θ that minimise the error that the
network makes in fitting this function? In neural-network terminology, we
would define an “energy” function that measures the errors that the network
makes, and then try to minimise this function with respect to θ.

For example, a suitable choice of energy or error function for regressionRegression
might be

Etrain (θ) =
∑

µ

(yµ − f (xµ,θ))
2

(4.1)

where f (xµ,θ) is the output of the network for input xµ, given that the
parameters describing the network are θ. We can train this network by any
standard (non-linear) optimisation algorithm, such as conjugate gradient
descent.

A suitable choice of energy or error function to minimise for classification isClassification
the negative log likelihood (if yµ ∈ {0, 1})

Etrain (θ) = −
∑

µ

(yµ log fµ + (1− yµ) log(1− fµ)) (4.2)

where fµ = f(xµ,θ). In this case, we would need that the final output r(x)
is bounded between 0 and 1 in order that it represents a probability. The

7

case of more than two classes is handled in a similar way using the so-called
soft-max function (see Bishops book for references).

In principle, the problem of training neural networks is equivalent to the gen-Regularisation
eral statistical problem of fitting models to data. One of the main problems
when fitting complex non-linear models to data is how to prevent “over-
fitting”, or, more generally, how to select the model that not only fits the
data, but also generalises well to new data. We have already discussed this
issue in some generality, and found that one approach is to use a penalty
term which encourages smoother functions. In the case of MLPs, smoother
functions can be encouraged if we penalise large weight values. The reason
for this is that the larger the weights wi are, the more rapidly the function
can change as x changes (since we could flip from close to one near saturated
region of the sigmoid to the other with only a small change in x).

A term which penalises large weights,

Eregtrain(θ) = Etrain(θ) + λθTθ (4.3)

We can set λ as usual by using a validation set.

4.1 Single Hidden Layer

A MLP with a single hidden layer is

f(x,θ) = r

(
K∑

i=1

vig(wi ·x + bi) + b

)

(4.4)

an example of which is given in fig(3).

In the case of regression, we would use an output function r to be theRegression
identity, and the squared output to form the error1:

E(θ) =

P∑

µ=1

(f(xµ,θ)− yµ)2 + λ

K∑

k=1

(wk)
Twk (4.5)

To use the conjugate gradients algorithm to optimise this objective function,
we need to know the derivatives with respect to all the parameters ∂E/∂θi.

∂E

∂θi
= 2

P∑

µ=1

(f(xµ,θ)− yµ)
∂f(xµ,θ)

∂θi
+ 2

∑

k

dim(wk)
∑

j=1

wj,k
∂wj,k
∂θi

(4.6)

The final term is zero unless we are differentiating with respect to a pa-
rameter that is included in the regularisation term. If θi is included in the
regularisation term, then the final term simply is 2θi. All that is required
then is to calculate the derivatives of f with respect to the parameters.
This is a straightforward exercise in calculus, and we leave it to the reader
to show that, for example,

∂f(xµ,θ)

∂v1
= g(wT

1 xµ + b1) (4.7)

1 There is no need to penalise the biases, since they only really affect a translation of
the functions, and don’t affect how bumpy the functions are.

8

and
∂f(xµ,θ)

∂w1,2
= v2g(w

T
2 xµ + b1)x

µ
1 (4.8)

Example code for regression using a single hidden layer is given below. It
is straightforward to adapt this for classification. This code is not fully
vectorised for clarity, and also uses the scg.m function, part of the NETLAB
(see http://www.ncrg.aston.ac.uk) package which implements many of
the methods in these chapters.

9

% Single hidden layer Neural Network to do regression

% Note : this code assumes that each datapoint is a row vector

% Also required is the NETLAB scg.m, available from http://www.ncrg.aston.ac.uk

% training data:

x=randn(20,1); % one dimensional inputs

%x=randn(20,2); % two dimensional inputs

y = sin(4*sum(x,2)); % one dimensional ouputs

n = size(x,2);

K = 10; % number of hidden units

% initial value for the parameters:

w = 0.01*randn(n,K); b = randn(1,K); v = randn(K,1); b0=1

nw = prod(size(w)); % number of weight parameters

th_init=[reshape(w,1,nw),b,v’,b0]; % initial parameter vector

lambda = 0.1; % regularisation

% now use Scaled Conjugate Gradients to find optimal parameters:

options = zeros(1,18); options(9)=1; options(1)=1;options(14)=200;

[th_opt]=scg(’E’,th_init,options,’grad_E’,x,y,nw,K,lambda);

% plot the result :

plot(x,y,’x’); hold on; xplot = [-3:0.01:3]’;

plot(xplot,nnfn(xplot,th_opt,nw,K))

function E = E(th,x,y,nw,K,lambda)

[f,w,b,v,v0] = nnfn(x,th,nw,K);

E = sum((y-f).^2) + lambda*sum(sum(w.*w));

function gE = grad_E(th,x,y,nw,K,lambda)

[f,w,b,v,b0] = nnfn(x,th,nw,K);

gf = grad_nnfn(x,th,nw,K);

gE = 2*sum(repmat(f-y,1,length(th)).*gf);

grad_reg=zeros(size(gE));

grad_reg(1:K*size(x,2))=2*lambda.*reshape(w,1,prod(size(w))); % regularisation

gE = gE + grad_reg;

function [f,w,b,v,b0] = nnfn(x,th,nw,K)

% single hidden layer NN for regression

[p,n]= size(x);

% get the parameters from vector th

w=reshape(th(1:nw),n,K); b=th(nw+1:nw+K);

v=th(nw+K+1:nw+2*K)’; b0 =th(nw+2*K+1);

a = x*w + repmat(b,p,1); % hidden unit activations

% h = 1./(1+exp(-a)); % sigmoidal hidden units

h = exp(-0.5*a.^2); % Gaussian hidden units

a0 = h*v + repmat(b0,p,1); % output activation

f = a0; % output transfer function is the identity

function g = grad_nnfn(x,th,nw,K)

% single hidden layer NN for regression

[p,n]= size(x); [f,w,b,v,b0] =nnfn(x,th,nw,K);

a = x*w + repmat(b,p,1); % hidden unit activion

% h = 1./(1+exp(-a)); % sigmoidal hidden units

h = exp(-0.5*a.^2); % Gaussian hidden units

% gb = repmat(v’,p,1).*h.*(1-h); % sigmoidal hidden units

gb = -repmat(v’,p,1).*a.*h; % Gaussian hidden units

for mu =1:p % done using loop for clarity

gw(mu,:) = reshape(x(mu,:)’*gb(mu,:),1,prod(size(w)));

end

gv=h; gb0=ones(p,1); g = [gw gb gv gb0];

10

4.2 Back Propagation

In computing the gradient of the error function, naively it appears that we
need of the order of PW 2 operations (if W is the number of parameters in
the model and P is the number of training patterns), since computing the
output of the network involves roughly W summations for each of the P
patterns, and the gradient is a W -dimensional vector. The essence of the
backpropagation procedure is that the gradient can instead by computed in
order PW operations. If the training set is very large, standard computa-
tion of the gradient over all training patterns is both time-consuming and
sensitive to round-off errors. In that case, “on-line learning”, with weight
updates based on the gradient for individual patterns, offers an alternative.
Back propagation is most useful in cases where there are more than one
hidden layer in the network. In this case, the gradient can be computed
more efficiently, and time saved therefore to find the optimal parameters.

4.3 Training ensembles of networks

A problem with neural networks is that they are difficult to train. This
is because the surface of the error function E(θ) is very complicated and
typically riddled with local minima. No algorithm can guarantee to find

the global optimum of the error surface. Indeed, depending on the initial
conditions that we use, the parameters found by the optimisation routine
will in general be different. How are we to interpret these different solutions?
Perhaps the simplest thing to do is to see which of the solutions has the
best error on an independent validation set. Many algorithms have been
proposed on how to combine the results of the separate networks into a
single answer and for computing error bars that indicate the reliability of
this answer. Imagine that we have used optimisation several times, and
found the different solutions θ

i, i = 1, . . . ,M . One simple approach (for
regression) is to combine the outputs of each of the trained models,

f̄(x) =
1

M

M∑

i=1

f(x,θi) (4.9)

This is also useful since we can make an estimate of the variance in the
predictions at a given point,

var(f(x) =
1

M

M∑

i=1

(
f(x,θi)− f̄

)2
(4.10)

This can then be used to form error bars f̄(x)±
√

var(f(x)).

5 Neural Network Applications

5.1 General considerations

Most neural network applications derive from their learning capabilities.
Mainly used are standard feedforward neural networks, either for classifica-
tion or for regression. In these applications, the neural network serves as an
alternative to standard statistical solutions. The underlying idea is that due
their inherent nonlinearity, neural networks are better in modeling complex

11

relationships than classical statistical methods. In the end, this need not
always be the case. One of the reasons for the popularity of neural networks
is that, using standard tools, a reasonable solution can be obtained in a
reasonable amount of time. This gave neural networks the image of “second
best” solutions.

This viewpoint is understandable when we consider standard neural pack-
ages, i.e., stand-alone software for horizontal applications across different
domains. As explained before, a (feedforward) neural network is not prin-
cipally different from standard statistical models. However, many of the
available software packages do not treat neural networks as such. On the
contrary, the thoroughness that surrounds classical statistical models (tools
for computing confidence intervals, model and feature selection, outlier de-
tection, and so on) is replaced with sloppiness under the presumption that
neural networks are so powerful that they can do without. Furthermore,
the standard packages are often not flexible enough to handle all peculiari-
ties of the problem to be solved. So, indeed, it is relatively straightforward
to build simple neural applications with standard packages, but these are
easily outperformed when more effort is put in.

An alternative, rapidly gaining ground, are neural toolboxes for statistical
packages like SPSS, SAS, and Matlab. The threshold for usage is somewhat
higher, the user has to buy and become acquainted with the statistical engine
supporting the neural algorithms. The advantages over stand-alone neural
packages are increasing flexibility and easy integration with statistical tools.
This makes them very well suited for building tailored neural applications,
examples of which will be given below. In these tailored applications, the
neural machinery often only takes up a small but essential piece of the total
solution.

5.2 Example applications

Applications of neural networks can be found in any domain where data is
available to support decisions. The general term in this context is “data
mining”, also referred to as “knowledge discovery in databases”. Neural
networks are often quoted as the technology to be used, others being machine
learning, clustering, statistics, and visualization techniques. Here we will
give a short overview of neural data mining applications.

Marketing. : Customer credit, billing, and purchases were some of the first business
transactions to be automated with computers, yielding huge amounts
of data available for mining in search for knowledge that can improve
marketing results or lower marketing costs. A typical example is di-
rect mailing. A test mailing is made to a small subset of customer. A
feedforward neural network is used to model the response as a function
of the characteristics of the customer. This model can then be used
to determine who should be included in the subsequent mass mailing
and which offers should be included. Other examples can be found in
customer relationship management (enhance the revenues of existing
customers by tuning marketing messages) and preventing customer
retention (identifying customers who are likely to switch to competi-
tors).

Retail and logistics. : Neural networks are used for demand forecasting. In principle, these

12

are standard time-series prediction problems in which neural net-
works have to compete with standard tools such as Box-Jenkins and
ARMA. A nontrivial application has been developed for the prediction
of single-copy newspaper sales. In this setting, predictions are needed
on a daily basis for a huge set of individual outlets. By combining all
outlets in a single neural network, the outlets can “learn from each
other”, e.g., by extracting typical demand features. In this setting,
the neural architecture yields a clear benefit over standard approaches
that treat all outlets individually.

Finance. : Finance is the domain for success stories of the type “neural networks
predict stock returns”. Despite the fact that there may be successful
solutions that temporarily work, including neural ones, the general
feeling is that anything can be lucky. There are other problems in
the financial domain that are better suited for a neural approach. Ex-
amples are the detection of fraudulent transactions with credit cards,
portfolio optimization, predicting bankruptcies, and credit risk assess-
ment. In most of these applications, neural networks are either used
for time-series prediction or classification, their benefit over other tools
being the capability of dealing with nonlinearities.

Manufacturing. : The quality of a manufactured product often depends on the settings of
many parameters. The exact relationship between these settings and
the quality are often not well understood and too complex to describe
with a physical or chemical model. Trained on examples yielding good
and bad qualities, neural networks can provide a solution. Other ap-
plications of neural networks are in job shop scheduling and automatic
inspection. In these control applications, neural networks are mainly
used for function fitting to model (part of) the process one needs to
control.

Health and medicine. : Some of the applications in health and medicine resemble those in
marketing and finance: detection of fraudulent insurance claims, risk
assessment of clients, and so on. Other application relate to automatic
diagnosis of diseases. It should be mentioned that in many medical
applications, the surplus value of using neural networks over standard
tools such as Cox survival analysis is often rather small. In many cases
the databases are too small and too noisy to provide evidence of very
complex relationships that would benefit from a neural approach.

Energy and utility. : Prediction of energy demand is very relevant, both for large consumers
who are often charged based on their peak energy usage, and for
providers that have to anticipate upon extreme demands. In this con-
text neural networks are used as nonlinear time-series predictors. A
quite different kind of application in this area involves the detection
of likely sites for gas and oil deposits. Based on all kinds of mea-
surements at test drilling sites, neural networks are used to predict
changes in the strata of rock, which relates to the presence of mineral
deposits.

Summarising, there are indeed many (potential) applications of neural net-
works. Often it is not so much the technique that matters, but more the
insight that appropriate use of available data can help to solve the prob-
lem. The exact technique becomes important for large-scale problems, where

13

small improvements have major consequences. In general, neural machinery
is most promising if there are nonlinear relationships between explanatory
and response variables and sufficient data to find these. Especially the lat-
ter condition need not always be fulfilled, in which case the surplus value
of neural networks over simpler techniques is limited. The trends are ver-
tical applications, embedding in other statistical techniques, and combina-
tion of knowledge about the domain and available data. Most applications
are based on classical frequentist statistics, although those using Bayesian
methodology are increasingly common.

