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Worked Example

I 3 class data: e.g. 1,2,1,3,1,1,2,1,2,3,1,1,1.

I Represent in 1 of m: ci = 1 iff (if and only if) class is i .

I Write out likelihood of one datum. Use θi = P(ci = 1)

P(ci = 1|Θ) =
∏

i

θci
i = θc1

1 θc2
2 θc3

3

I (Note: θc1
1 θc2

2 θc3
3 = θ2 iff c2 = 1) etc.

I Now for all the data D:

P(D|Θ) =
∏
µ

∏
i

θ
cµ

i
i = θN1

1 θN2
2 θN3

3

I Take logs

log P(D|Θ) =
∑

µ

∑
i

cµ
i log θi =

∑
i

Ni log θi
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Worked Example

I Take logs

log P(D|Θ) =
∑

µ

∑
i

cµ
i log θi =

∑
i

Ni log θi

I Need to optimise subject to condition
∑

i θi = 1. Add on
Lagrange multiplier term λ(

∑
i θi − 1), and differentiate wrt θk

using
∂

∂θk
[log P(D|Θ) + λ(

∑
i

θi − 1)] =
Nk

θk
+ λ

I Set derivative to zero to get θk = −Nk/λ. Substitute into
constraint:

∑
i θi = 1 to get λ = −

∑
k Nk . Final answer:

θk =
Nk∑
k Nk
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The Gaussian Distribution

I This lecture we will be focusing on continuous quantities.
I The most common (and most easily analysed) distribution

for continuous quantities is the Gaussian distribution.
I Gaussian distribution is often a reasonable model for many

quantities due to various central limit theorems.
I Gaussian is sometimes called a normal distribution.
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Definition

I The one dimensional Gaussian distribution is given by

P(x |µ, σ2) = N(x ;µ, σ2) =
1√

2πσ2
exp−(x − µ)2

2σ2

I µ is the mean of the Gaussian and σ2 is the variance.
I If µ = 0 and σ2 = 1 then N(x ;µ, σ2) is called a standard

Gaussian.
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Plot

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

I This is a standard one dimensional Gaussian distribution.
I All Gaussians have the same shape subject to scaling and

displacement.
I If x is distributed N(x ;µ, σ2), then y = (x − µ)/σ is

distributed N(y ; 0, 1).
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Normalisation

I Remember all distributions must integrate to one. The√
2πσ2 is called a normalisation constant - it ensures this is

the case.
I Hence tighter Gaussians have higher peaks:
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Central Limit Theorems (Interest Only)

I Xi mean 0, variance Σ, not necessarily Gaussian.
I Xi subject to various conditions (e.g. IID).

1√
N

N∑
i=1

Xi ∼ N(0,Σ)

asymptotically as N →∞.
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Maximum Likelihood Estimation

I Suppose we have data {xi , i = 1, 2, . . . , n}.
I Suppose we presume the data was generated from a

Gaussian with mean µ and variance σ2. Call this the
model.

I Then the log probability of the data given the model is

log
∏

i

P(xi |µ, σ2) = −1
2

∑
i

(xi − µ)2

σ2 − N
2

log(2πσ2)

Steps left as exercise: hint log
∏

=
∑

log
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Maximum Likelihood Estimation

I Maximum likelihood: Set γ = 1/σ2 Take derivatives

log P(X |µ, γ) = −1
2

∑
i

γ(xi − µ)2 − N
2

log(2π) +
N
2

log γ

∂ log P(X |µ, γ)

∂µ
= γ

∑
i

(xi − µ)

∂ log P(X |µ, γ)

∂γ
= −1

2

∑
i

(xi − µ)2 +
N
2γ

I Hence µ = (1/N)
∑

i xi and σ2 = (1/N)
∑

i(xi − µ)2.
I (Maximum likelihood estimate of σ2 is biased.)
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Multivariate Gaussian

I The vector x is multivariate Gaussian if for mean µ and
covariance matrix Σ, it is distributed according to

P(x|µ,Σ) =
1

(2π)d/2|Σ|1/2 exp
(
−1

2
(x− µ)T Σ−1(x− µ)

)
I The univariate Gaussian is a special case of this.
I Σ is called a covariance matrix. It says how much

attributes co-vary. More later.
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Multivariate Gaussian: Picture
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Multivariate Gaussian: Maximum Likelihood

I The Maximum Likelihood estimate can be found in the
same way.

I µ = (1/N)
∑N

i=1 xi

I Σ = (1/N)
∑N

i=1(xi − µ)(xi − µ)T
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Example

I The data.
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Example

I The data. The maximum likelihood fit.
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Class conditional classification

I Have real valued multivariate data, along with class label
for each point.

I Want to predict the value of the class label given some new
point.

I Presume that if we take all the points with a particular
label, then we believe they were sampled from a Gaussian.

I How should we predict the class at a new point?
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Class conditional classification

I Learning: Fit Gaussian to data in each class (class
conditional fitting). Gives P(position|class)

I Find estimate for probability of each class (see last lecture)
P(class)

I Inference: Given a new position, we can ask “What is the
probability of this point being generated by each of the
Gaussians?”

I Pick the largest (just like maximum likelihood)
I Better still give probability using Bayes rule

P(class|position) ∝ P(position|class)P(class)

Then can get ratio
P(class = 1|position)/P(class = 0|position).

I Decision boundary for two classes is where this ratio is
one.
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Summary

I Gaussian
I Maximum Likelihood fitting of a Gaussian
I Multivariate Gaussian and covariances again.
I Maximum Likelihood fitting.
I Class conditional classification using Gaussians.
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