
KMM Tutorial 3
1. The purchasing manager for a restaurant performs an analysis of the chef’s favourite dishes and in-

gredients. She uncovers the following: Lamb, Beef, Tofu, Squid and Prawn are the most common dishes,
cooked in a range of sauces that contain Cream, CoconutMilk, Chilli, LemonJuice and SoySauce. Let-
ting cookedIn and contains be binary relations that relate dishes to sauces, and sauces to their ingredients
respectively, write necessary and sufficient definitions in the Description Logic ALC for the following:

i. SweetSauce is a Sauce that contains some Cream, and either contains only Cream, or contains some
CoconutMilk and does not contain Chilli.

ii. SourSweetSauce is a Sauce that contains some CoconutMilk and contains some LemonJuice and
contains some Chilli.

iii. HotSauce is a Sauce that contains some Chilli and contains only Chilli or SoySauce.

iv. RedMeat is Lamb or Beef.

v. A WinterDish is RedMeat that is cookedIn only a Sauce that contains some Chilli, and is cookedIn
some Sauce.

vi. A SummerDish is Tofu or Squid that is cookedIn only a Sauce that contains some CoconutMilk, and
is cookedIn some Sauce.

vii. Is Tofu with SourSweetSauce necessarily a WinterDish? Construct a FACT tableaux to decide
whether or not this subsumption relationship holds.

viii. Is Tofu with SourSweetSauce necessarily a SummerDish? Construct a FACT tableaux to decide
whether or not this subsumption relationship holds.

1

Answers

Module Title: Knowledge Modelling and Management
Exam Diet (Dec/April/Aug): April 2006
Brief notes on answers:

1. (a) Answer to part A of question 1
i. SweetSauce≡ Sauce " ∃contains.Cream " (∀contains.Cream % (∃contains.CoconutMilk
" ¬∃ contains.Chilli))
ii. SourSweetSauce ≡ Sauce " ∃contains.CoconutMilk " ∃contains.LemonJuice
" ∃contains.Chilli
iii. HotSauce ≡ Sauce " ∃contains.Chilli " ∀contains. (Chilli % SoySauce)
iv. RedMeat ≡ (Beef % Lamb)
v. WinterDish≡ RedMeat " ∀cookedIn.(Sauce " ∃contains.Chilli) " ∃cookedIn.Sauce
vi. SummerDish≡ (Tofu % Squid) " ∀cookedIn.(Sauce " ∃contains.CoconutMilk)
" ∃cookedIn.Sauce
vii. Tofu with SourSweetSauce is a SummerDish as the sauce contains some
CoconutMilk. Assuming Tofu and RedMeat are disjoint, this dish cannot be a
WinterDish despite the sauce containing Chilli.

(b) Answer to part B of question 1

A knowledge model (KM) includes three types of knowledge (knowledge cate-
gories): domain knowledge (including domain schema, knowledge base), infer-
ence knowledge and task knowledge.

Typically a KM includes the following items: (1) A diagram of the full domain
schema: e.g. a UML class diagram, Ontology, ER data model, (2) An inference-
structure diagram, (3) A list of knowledge roles, (4) Textual and graphical spec-
ifications of the tasks and task methods.

While Domain Knowledge describes the data objects, their types and attributes
of the domain, task knowledge describes activities that manipulate them. Among
them, some of the tasks are knowledge-intensive and can benefit from reasoning
activities. This is described in the inference knowledge.

2. (a) Answer to part A of question 2
i. The properties are:
functional: providing a specific function in the patterned organisation of the
whole object, e.g. component-integral object
homeomerous: of the same substance, e.g. portion-mass ; separable, theoretically
separable, e.g. member-collection.
ii. It is a component-integral object relation as it is functional, not homeomerous
and separable
iii. surface-of(x,y) → part-of(x,y)
or surface-of ' part-of
iv. Transitivity and antisymmetry make sense, but reflexivity does not as both
interior objects and surfaces would be their own surface. It is more correct to
view surface-of as a strict ordering.

i

vii. Is Tofu with SourSweetSauce necessarily a WinterDish? Construct a FACT tableaux to decide
whether or not this subsumption relationship holds. Formally, using FACT:

Goal: (Tofu u ∀cookedIn.(Sauce u ∃contains.CoconutMilk u ∃contains.LemonJuice u ∃contains.Chilli)
u ∃cookedIn.Sauce)
v WinterDish
(Tofu u ∀cookedIn.(Sauce u ∃contains.CoconutMilk u ∃contains.LemonJuice u ∃contains.Chilli)
u ∃cookedIn.Sauce)
u ¬(RedMeat u ∀cookedIn.(Sauce u ∃contains.Chilli) u ∃cookedIn.Sauce)

NNF: {(Tofu u ∀cookedIn.(Sauce u ∃contains.CoconutMilk u ∃contains.LemonJuice u ∃contains.Chilli)
Node(a0) u ∃cookedIn.Sauce)

u (¬RedMeat t ∃cookedIn.(¬Sauce t ∀contains.¬Chilli) t ∀cookedIn.¬Sauce)}
Node(a0) {Tofu u ∀cookedIn.(Sauce u ∃contains.CoconutMilk u ∃contains.LemonJuice u ∃contains.Chilli)
u elim. u ∃cookedIn.Sauce,

¬RedMeat t ∃cookedIn.(¬Sauce t ∀contains.¬Chilli) t ∀cookedIn.¬Sauce}
Node(a0) {Tofu,∀cookedIn.(Sauce u ∃contains.CoconutMilk u ∃contains.LemonJuice u ∃contains.Chilli),
u elim. ∃cookedIn.Sauce,
∗2 ¬RedMeat t ∃cookedIn.(¬Sauce t ∀contains.¬Chilli) t ∀cookedIn.¬Sauce}
Node(a0) {Tofu,∀cookedIn.(Sauce u ∃contains.CoconutMilk u ∃contains.LemonJuice u ∃contains.Chilli),
disjunct1 ∃cookedIn.Sauce,
t elim. ¬RedMeat}

unless we can show a contradiction between Tofu and ¬RedMeat, disjunct1 remains open
Continue with the rest of the FACT procedure, although we could stop here.

Node(a0) {Tofu,∀cookedIn.(Sauce u ∃contains.CoconutMilk u ∃contains.LemonJuice u ∃contains.Chilli),
disjunct2 ∃cookedIn.Sauce,
t elim. ∃cookedIn.(¬Sauce t ∀contains.¬Chilli)}

add edge labelled cookedIn from a0 to a1
Node(a1)
∃ elim. {¬Sauce t ∀contains.¬Chilli,
∀ elim. Sauce u ∃contains.CoconutMilk u ∃contains.LemonJuice u ∃contains.Chilli}
Node(a1) {¬Sauce,
disjunct2a Sauce u ∃contains.CoconutMilk u ∃contains.LemonJuice u ∃contains.Chilli}
Node(a1) {¬Sauce,
u elim. Sauce,∃contains.CoconutMilk,∃contains.LemonJuice, ∃contains.Chilli}

Clash (Sauce)
Node(a1) {∀contains.¬Chilli,
disjunct2b Sauce u ∃contains.CoconutMilk u ∃contains.LemonJuice u ∃contains.Chilli}
Node(a1) {∀contains.¬Chilli,
u elim. Sauce,∃contains.CoconutMilk,∃contains.LemonJuice, ∃contains.Chilli}

add edge labelled contains from a1 to a2
Node(a2)
∃ elim. {Chilli,
∀ elim. ¬Chilli}

Clash (Chilli)
disjunct2 shows a clash as disjunct2a and disjunct2b clash

2

Node(a0) {Tofu,∀cookedIn.(Sauce u ∃contains.CoconutMilk u ∃contains.LemonJuice u ∃contains.Chilli),
disjunct3 ∃cookedIn.Sauce,
t elim. ∀cookedIn.¬Sauce}

add edge labelled cookedIn from a0 to a3
Node(a3)
∃ elim. {Sauce,
∀ elim. ¬Sauce}

Clash (Sauce)
disjunct3 shows a clash

Returning to the open disjunct (disjunct1), there ought to be a way to include the fact that nothing is both
Tofu and RedMeat and develop the proof further. Note that the four FACT rules covered in lectures do not
allow this goal to be proven.

Node(a0) {Tofu,∀cookedIn.(Sauce u ∃contains.CoconutMilk u ∃contains.LemonJuice u ∃contains.Chilli),
disjunct1 ∃cookedIn.Sauce,

¬RedMeat}

You should be aware that disjointness means: Tofu u RedMeat v ⊥.
Disjointness can also be written: Tofu v ¬RedMeat
and can be expressed as a constraint: > v ¬Tofu t ¬RedMeat and so {¬Tofu t ¬RedMeat} holds
universally.

However, this does not lead to a contradiction, just the opposite as if instance a0 instantiates the class
Tofu, it necessarily instantiates ¬RedMeat and so disjunct1 cannot show a clash. Adding ¬Tofu t
¬RedMeat to the label set for a0 just returns the proof to the same state, as you can verify.

viii. Is Tofu with SourSweetSauce necessarily a SummerDish? Construct a FACT tableaux to decide
whether or not this subsumption relationship holds.

Goal: (Tofu u ∀cookedIn.(Sauce u ∃contains.CoconutMilk u ∃contains.LemonJuice u ∃contains.Chilli)
u ∃cookedIn.Sauce)
v SummerDish

NNF:
Node(a0)

NNF: negation normal form
Node: node in FACT graph

3

