
1 

KMM ontology Lecture 5 

!  Assessed assignment 1 
– Due 17 Feb. 
–  3 questions 
–  Level 10 students answer Q1 and one other 

!  Q1 Understand an OWL ontology 
–  Install Protégé and download the clothing.owl 

ontology from the KMM website 
– Answer parts i. to v. by editing (and saving) the 

ontology 
»  Submit the revised ontology electronically 

–  Each part i. to v. also requires a written answer 
– Questions relate to a line of clothing inspired by the 

Beatles Sgt. Pepper album cover 

2 

KMM ontology Lecture 5 

!  Q2 Describe an existing ontology 
–  E.g. one covered in lecture 6 
–  500 words / 1 page (750 words for level 10) 
–  Summarise concisely 

»  Include example concept definitions 
!  Q3 Describe the work of Linnaeus 

–  500 words / 1 page (750 words for level 10) 

3 

KMM ontology Lecture 5 

!  Derived from the OWL abstract syntax, but less 
verbose 

– Aims to be easier to read and write 
»  Especially for non-logicians 

– Minimal use of () 
– Allows DL expressions to be written in an English-like 

grammar, for email exchanges, GUIs etc 
!  Previously… 

– ALC / SHOIN / SHOIQ logical syntax: “!R.C” 
– OWL abstract syntax: < Restriction> !
!< onProperty R> < allValuesFrom C >> 

!  Manchester syntax:  “R only C” 

4 

KMM ontology Lecture 5 

!  Observed that DL syntax is cryptic 
!  Quantifier Role. Concept order can be confusing and 

misread: 
Person   "eats.Meat 
 correct: Persons that eat (among other things) some 
Meat 
 incorrect: some Persons eat Meat 

Manchester syntax is: 
Person that eats some Meat    [Person   "eats.Meat] 
Person that eats only Meat      [Person   !eats.Meat] 



5 

KMM ontology Lecture 5 

DL Syntax Manchester Syntax Example 
¬C not C not Male 

  C  D C or D Man or Woman 

C  D C and D Parent and Man 

!R.C 
R only C hasColleague only 

Professor 

"R.C 
R some C hasColleague some 

Professor 
#n R R min n hasColleague min 3 

!n R R max n hasColleague max 3 

= n R R exactly 3 hasColleague exactly 3 

"R.{a} R value a hasColleague value Fred 

6 

KMM ontology Lecture 5 

!  In case of ambiguity of scope, a precedence 
order is defined (from highest to lowest): 

–  some, all, value, min, max, exactly, that 
–  not 
–  and 
–  or 

!  Example: 
Person that 
hasChild some (Person and 
    (hasChild only Man) and (hasChild some Person)) 

‘that’ and ‘and’ are synonyms, but, syntactically,  
‘that’ can be used only once, prior to a role expression: 

Class that role quantifier Class … 

7 

KMM ontology Lecture 5 

Covering / Closure  

!  ‘onlysome’ design pattern 
– Common to specify “eats some Meat and eats only Meat” 
–  The onlysome pattern makes this easier to state 
E.g. Pizza that hasTopping onlysome [MozzarellaTopping, 

TomatoTopping] 
Is shorthand for 
Pizza that  
(hasTopping some MozzarellaTopping) and  
(hasTopping some TomatoTopping) and  
(hasTopping only (MozzarellaTopping or TomatoTopping)) 

8 

KMM ontology Lecture 5 

!  Protégé 4 allows class expressions to be 
entered by typing the Manchester OWL 

–  E.g. define VegetarianPizza  

Pizza  ¬ "hasTopping.FishTopping  
 ¬ "hasTopping.MeatTopping 

ALC 

Pizza!
and not (hasTopping some FishTopping)!
and not (hasTopping some MeatTopping)!

Manchester 

Protégé 4 
GUI 



9 

KMM ontology Lecture 5 

!  The original OWL has been extended 
– OWL 1.1 and 2 are based on the SROIQ logic  
– Adds new ways to reason about roles R 
– Adds new cardinality constraints 
–  http://www.w3.org/TR/2009/REC-owl2-overview-20091027/ 

!  These extensions are seen as useful in applications 
and technically feasible   

–  SRIOQ is decidable 
!  New: 

– Roles 
– Number restrictions 
–  Proof 
–  Syntax  

10 

KMM ontology Lecture 5 

!  subPropertyOf 
subPropertyOf(hasMother,hasParent) 
subPropertyOf(P, Q):: P(x, y) $ Q(x, y) 

!  In DL: hasMother  hasParent 

a0 
Show: "hasMother.Person  "hasParent.Person  

{"hasMother.Person, !hasParent. ¬Person} 

a1 
hasMother 

{Person} 

Equivalently: 
L(a0)= {"hasMother.Person, 
!hasParent. ¬Person} 
 L(<a0,a1>)= {hasMother} 
 L(a1) = {Person} 

By role inclusion: hasMother  hasParent 
 it should follow that: 
L(<a0,a1>) = {hasMother, hasParent} 
L(a1) = {Person, ¬Person} 
Reasoning about roles increases 
expressivity 

11 

KMM ontology Lecture 5 

!  Roles are given more prominence in OWL 2 
!  Role hierarchy  

–  subPropertyOf 

!  Role assertions 
–  Roles can be declared symmetric, transitive, reflexive or irreflexive  
–  Disjoint roles, e.g. motherOf / sisterOf 

!  Role inclusion axioms 
–  Propagate one property across another 
(owns ! hasPart)  owns  
[i.e. owns(x, y) %hasPart(y, z) $ owns(x, z) ] 
Car  "hasPart.Engine   implies: 
"owns.Car  "owns.Engine 

12 

KMM ontology Lecture 5 

!  The set of roles is the set of role names, plus an 
inverse relation for each role name 

!  Formally, let RN be the set of role names 
  the set of roles is RN & {R- | R ' RN} 

 where R- is the inverse role of R 

  RI ( "I * "I  
 (R-)I = {<y,x> | <x,y> ' RI} 

The function Inv() applies to roles: 
 Inv(R) = R-      Inv(R-) = R 



13 

KMM ontology Lecture 5 

!  The Role box R includes 
–  The role hierarchy 
– Role inclusion axioms e.g. owns  ! hasPart  owns  
– Role assertions 

!  Role inclusion axioms have some restrictions that 
prevent cyclic dependencies, these are valid: 

R ! S  R ;   S ! R  R;  R ! R  R ; 
S-  S 
More generally, w  R    iff   Inv(w)  Inv(R) 
where w is a string of role names 

14 

KMM ontology Lecture 5 

!  Role assertions 
Sym(R) if   <x,y> ' RI $ <y,x> ' RI  

Tra(R)   if   (<x,y> ' RI and <y,z> ' RI) $ <x,z> ' RI 

Ref(R)   if  {<x,x>| x ' "I } ( RI 

Irr(R)     if   RI ) {<x,x>| x ' "I } = *        * 
Dis(R,S)   if RI )  SI = *                             *simple roles only 

!  In fact: 
Sym(R) = R-  R 
Tra(R)   = R ! R  R 
So these role assertions are equivalent to inclusion axioms 

15 

KMM ontology Lecture 5 

!  Manchester syntax has been extended to OWL 2 
–  Property chains 

 partOf ! partOf 
 is written: partOf o partOf         I.e. with an small letter o 

16 

KMM ontology Lecture 5 

!  Number restrictions in OWL-DL 
– Minimum cardinality:   
 # n R   :: {x ' "I | #(<x,y> ' RI) # n } 
E.g. The set of things with at least 2 parts-that-are-Wheels:  
# 2 hasWheel 

!  Number restrictions in OWL 2 
– Minimum cardinality specifies the class C for the n 

instances:    
# n R. C  :: {x ' "I | #(<x,y> ' RI % y ' CI) # n } 
E.g. The set of things with at least 2 Wheels as parts:  
#  2 hasPart. Wheel 
Similarly for maximum cardinality: ! n R.C 
**Simple roles only** cannot say Tra(R) and # n R. C  



17 

KMM ontology Lecture 5 

!   Local reflexivity: "R.Self 
 e.g. "likes.Self   

  ( "R.Self )I =  {x| <x,x> ' RI} 
!  Datatypes 

–  dataOneOf {set} defines an enumerated datatype 
–  dataComplementOf (data range) returns the complement of 

the data range 
– Datatype restriction uses datatype facet (from XML Schema) 

!  Annotations 
– Comments can be associated with subClassOf and axiom 

assertions 

18 

KMM ontology Lecture 5 

!  As with ALC tableaux, goals are constructed 
and translated into negation normal form 

!  Additional equivalences: 
¬(!n R.C)  = (#(n+1) R.C) 
¬(#(n+1) R.C)  = (!n R.C) 
¬(#0 R.C)  = � 

19 

KMM ontology Lecture 5 

!  Reasoning about role hierarchies and axioms 
increases the number of tableaux rules 

– Recall there were only 4 rules for ALC, one for each 
operator 

–  SROIQ has 18 rules 
– Automata theory is used to deal with role inclusion 
–  Tableaux algorithm remains sound and complete 

»  Subsumption is reduced to unsatisfiability: 
C  D iff  C  ¬D  � 

– Blocking is used to terminate the algorithm 

20 

KMM ontology Lecture 5 

!  Reasoning about roles 

a0 

a1 
partOf 

a2 
partOf 

{"partOf.("partOf C)    !partOf.¬C} 

{"partOf C, ¬C} 

[a0: , ", ! elim.] 

[a0: " elim.] 

{C} 
{C, ¬C} By construction: 

L(<a0,a1>)= {partOf}  L(<a1,a2>)={partOf} 
By axiom (partOf ! partOf)  partOf 
!partOf.¬C can be added to L(a1) and so 
L(a2) = {C, ¬C} showing a contradiction 

by transitivity 



21 

KMM ontology Lecture 5 

!  Number restrictions in OWL 2 
–  The tableaux for SROIQ has generating rules and 

shrinking rules 
»  “The even more irresistible SROIQ” Horrocks, I., Kutz, O. 

and Sattler, U. KR 2006 

a2 

hasPart 

a1 

hasPart 

{Wheel} {Wheel} 
                                                            1. Eliminate #2 to create 2 new nodes a1 a2 

               2. New rule for !nR.C Clash if > n nodes y,  
    where L(y) includes C 

{# 2 hasPart.Wheel, ! 1 hasPart.Wheel } a0 

22 

KMM ontology Lecture 5 

!  OWL 2 has a functional syntax and an XML syntax 
–  XML syntax is not based on RDF/XML 
–  XML schema is defined 

!  Functional Syntax Grammar 

Example 1:   !partOf.Car 
ObjectAllValuesFrom (http://www.inf.org#partOf   http://ww.inf.org#Car) 

Example 2: (owns ! hasPart)  owns  
SubObjectPropertyOf( 
     SubObjectPropertyChain(http://www.inf.org#owns http://www.inf.org#hasPart)  
     http://www.inf.org#owns) 

23 

KMM ontology Lecture 5 

Example 1:   !partOf.Car 
In XML: 
<ObjectAllValuesFrom> 

 <ObjectProperty IRI = “http://www.inf.org#partOf”/>  
 <Class IRI = “http://www.inf.org#Car”/> 

</ObjectAllValuesFrom> 

Example 2: 
: (owns ! hasPart)  owns  
In XML: 
<SubObjectPropertyOf>  

 <ObjectPropertyChain>  
  <ObjectProperty IRI = “http://www.inf.org#owns”/>  
  <ObjectProperty IRI = “http://www.inf.org#hasPart”/>  
 </ObjectPropertyChain>  

     <ObjectProperty IRI = “http://www.inf.org#owns”/>  
</SubObjectPropertyOf>  

24 

KMM ontology Lecture 5 

! OWL 2 extends OWL DL 
! Adds the role box (hierarchy, assertions 

and inclusion axioms) 
! Adds qualified number constraints 
! Reasoning remains sounds and 

decidable 
! XML syntax is based on a schema, not 

on RDF/XML 


