Description Logic and OWL

- **Description Logic**
 - An important element of the Semantic Web
 - Has a well-defined semantics
 - A Concept is a non-empty set
 - Enables subsumption (subClassOf relations) to be computed
 - Tractable inference algorithms

- **OWL (Web Ontology Language)**
 - An ontology language for the Semantic Web
 - Based on Description Logic
 - RDF/XML syntax

- **OWL 1.1 and 2**
 - Extend OWL
 - Modify syntax

Description Logic

- **Description Logics** allow formal concept definitions that can be reasoned about to be expressed
 - Example Concept definitions:
 - Woman ⊑ Person ∩ Female
 - Man ⊑ Person ∩ ¬Woman
 - Not a single logic, but a family of KR logics originating from KL-One e.g. AL, ALC,…SHIQ,…SHIN(D)
 - Subsets of first-order logic
 - Well-defined model theory
 - Known computational complexity

FACT inference algorithm
- Prove subsumption
- Prove disjointness

Further reading (not required reading):
- Horrocks, Ian. (1997) Optimising tableaux decision procedures for Description Logics, and many papers on-line
- Baader, F., Calvanese, D., McGuinness, D., Nardi, D., and Patel-Schneider, P. Description Logic Handbook (Chapter 2)

Description Logic Terminology

- **A Box**: Assertions
 - E.g. hasChild(john, mary)
 - This is the knowledge base
 (we will not look at this aspect)

- **T Box**: Terminology
 - The definitions of concepts in the ontology
 - Example axioms for definitions
 - C ⊑ D [C is a subclass of D, D subsumes C]
 - C = D [C is defined by the expression D]
Important terminology:
- Concept: class, category or type (as introduced earlier)
- Role: binary relation
- Attributes are functional roles
- Subsumption:
 - D subsumes C if C is a subclass of D
 - i.e. All Cs are Ds
- Unfoldable terminologies:
 - The defined concept does not occur in the defining expression
 - C \subseteq D where C does not occur in the expression D
- Language families
 - AL: Attributive Language
 - ALC adds full negation to AL

Language elements for concept expressions:
- Bottom: the empty set
- Top: the universal set
- CN: Concept name
- C: Concept expression
- R: Role expressions, limited to RN Role Names
- \neg: 'Not' forms the complement of a concept
- \cup: 'Union' forms the union (OR) of two concepts
- \cap: 'Intersection' forms the intersection (AND) of two concepts
- ∀: 'Value restriction'
- ∃: 'Exists restriction'

Grammar for C:
- \bot | \top | CN | \neg CN | C \cup D | C \cap D | \forall R.C | \exists R.C

Language elements for terminological axioms:
- C \equiv D ‘is defined by’ C is equivalent to D
- C \subseteq D ‘is subsumed by’ C is subsumed by/is a subclass of D

Terminological axioms make assertions about concept expressions.

Grammar for terminological axioms:
- C \equiv D | C \subseteq D

The cases of most interest are where CN is given a
- ‘necessary and sufficient definition’: CN \equiv D
And where CN is given a
- ‘necessary definition’: CN \subseteq D

Terminological axioms: Inclusions and equalities
- Concepts: C \subseteq D and C \equiv D
- Roles: R \subseteq S and R = S
Description Logic ALC

Example concept expressions:

Parent = “Persons who have (amongst other things) some children”

\[\text{Person} \sqcap \exists \text{hasChild}. \top \]

ParentOfBoys = “Persons who have some children, and only have children that are male”

\[\text{Person} \sqcap (\exists \text{hasChild}. \top) \sqcap (\forall \text{hasChild}. \text{Male}) \]

ScottishParent = “Persons who only have children that drink (amongst other things) some IrnBru”

\[\text{Person} \sqcap (\exists \text{hasChild}. (\exists \text{drink.IrnBru})) \]

Each term (atomic or compound) defines a set as given by the right-hand column in the table

– The model theory makes this more formal

ALC Model Theory: (wff) = {…a set…}; R' is a set = {<d,r>,…}

<table>
<thead>
<tr>
<th>CN', DN'</th>
<th>Atomic concepts</th>
<th>Non-empty sets CN', DN' \subseteq \lambda'</th>
</tr>
</thead>
<tbody>
<tr>
<td>\bot'</td>
<td>Bottom</td>
<td>\emptyset</td>
</tr>
<tr>
<td>\top'</td>
<td>Universal concept, Top</td>
<td>\lambda'</td>
</tr>
<tr>
<td>\neg C'</td>
<td>Full Negation</td>
<td>\lambda' \setminus C'</td>
</tr>
<tr>
<td>(C \cup D)'</td>
<td>Union</td>
<td>C' \cup D'</td>
</tr>
<tr>
<td>(C \cap D)'</td>
<td>Intersection</td>
<td>C' \cap D'</td>
</tr>
<tr>
<td>(\forall R,C)'</td>
<td>Value restriction</td>
<td>{x \in \lambda' \mid \forall y <x,y> \in R' \Rightarrow y \in C}</td>
</tr>
<tr>
<td>(\exists R,C)'</td>
<td>Full existential restriction</td>
<td>{x \in \lambda' \mid \exists y <x,y> \in R' \land y \in C}</td>
</tr>
</tbody>
</table>

Terminological axioms: Inclusions and equalities

Concepts: C \subseteq D iff C' \subseteq D'

C = D iff C' = D'

Value and Exists Restrictions

{a,b,c,d,e,f} are instances; Plant and Animal are classes

\[\text{Plant} \sqcap \text{Animal} \subseteq \bot' \]

(disjointness) \[\top' \subseteq \text{Plant} \sqcup \text{Animal} \]

(partition)

\[\exists \text{eats}. \text{Animal} = \{c,d,e\} \]

\[\forall \text{eats}. \text{Animal} = \{a,b,c,e,f\} \]

\[\exists \text{eats}. \text{Animal} \sqcap \forall \text{eats}. \text{Animal} = \{c,e\} \]
Model Theory

\[\Delta \text{universal domain of individuals, let } \Delta = \{a, b, c, d, e, f\} \]

- set of pairs for the relation eats, let \(\text{eats} = \{ (d, a), (d, e), (e, d), (e, f), (c, f) \} \)

For all concepts C:

i) \(C \subseteq \Delta \)

ii) \(\Diamond C \wedge \phi \)

Let \(\text{Animal} = \{ d, e, f \} \)

\(\neg \text{Animal} = \{ a, b, c \} \)

\(\text{eats. Animal} = \{ a, b, c, e, f \} \)

\(\text{eats. \neg Animal} = \{ c, d, e \} \)

Value and Exists Restrictions

\(\{a, b, c, d, e, f\} \) are instances; Plant and Animal are classes

Inference:

- MeatEater = \(\text{eats. Animal} = \{a, b, c, e, f\} \)
- Vegetarian = \(\text{eats. \neg Animal} = \{a, b, f\} \)
- Omnivore = \(\text{eats. Animal} = \{c, d, e\} \)

Vegetarian = \(\{a, b, f\} \) partition? MeatEater= \(\{a, b, c, e, f\} \)

ALC: Value Restriction

Value restriction: \(\forall R.C \)

- \(R \) is a binary relation, e.g. \(\text{eats}(x, y) \)
- \(C \) is a concept expression, e.g. Animal

Consider:

\[\forall y \text{ if } \text{eats}(x, y) \text{ then } y \in \text{Animal} \]

defines the set \(x \): Veats. Animal "things that eat only Animal"

In the formal model theory, where the domain is \(\Delta \), \(\text{eats} \) is represented by a set of tuples, e.g.

\(\text{eats} = \{ (d, a), (d, e), (e, d), (e, f), (c, f) \} \) meaning \(\text{eats}(d, a) \text{ eats}(d, e) \ldots \)

\(\text{Animal} = \{ d, e, f \} \)

The set corresponding to \(\forall y \text{ if } \text{eats}(x, y) \text{ then } y \in \text{Animal} \) is:

\[\{ x \in \Delta | \forall y \text{ if } \text{eats}(x, y) \text{ then } y \in \text{Animal} \} = \{ a, b, c, e, f \} \]

In general, \(\forall R.C \) is interpreted as:

\[\{ x \in \Delta | \forall y \text{ if } \text{eats}(x, y) \text{ then } y \in \text{Animal} \} = \{ a, b, c, e, f \} \]

<table>
<thead>
<tr>
<th></th>
<th>\text{allAnimal}</th>
<th>\neg</th>
</tr>
</thead>
<tbody>
<tr>
<td>\text{F}</td>
<td>\text{F}</td>
<td>\text{F}</td>
</tr>
<tr>
<td>\text{F}</td>
<td>\text{T}</td>
<td>\text{T}</td>
</tr>
<tr>
<td>\text{T}</td>
<td>\text{F}</td>
<td>\text{F}</td>
</tr>
<tr>
<td>\text{T}</td>
<td>\text{T}</td>
<td>\text{T}</td>
</tr>
</tbody>
</table>

ALC: Existential Restriction

Existential restriction: \(\exists R.C \)

- \(R \) is a binary relation, e.g. \(\text{eats}(x, y) \)
- \(C \) is a concept expression, e.g. Animal

Consider:

\[\exists y \text{ if } \text{eats}(x, y) \text{ and } y \in \text{Animal} \]

defines the set \(x \): Beats. Animal "things that eat some Animal"

In the formal model theory, where the domain is \(\Delta \), \(\text{eats} \) is represented by a set of tuples, e.g.

\(\text{eats} = \{ (d, a), (d, e), (e, d), (e, f), (c, f) \} \) meaning \(\text{eats}(d, a) \text{ eats}(d, e) \ldots \)

\(\text{Animal} = \{ d, e \} \)

The set corresponding to \(\exists y \text{ if } \text{eats}(x, y) \text{ and } y \in \text{Animal} \) is:

\[\{ x \in \Delta | \exists y \text{ if } \text{eats}(x, y) \text{ and } y \in \text{Animal} \} = \{ a, b, c, e, f \} \]

In general, \(\exists R.C \) is interpreted as:

\[\{ x \in \Delta | \exists y \text{ if } \text{eats}(x, y) \text{ and } y \in \text{Animal} \} = \{ a, b, c, e, f \} \]

<table>
<thead>
<tr>
<th></th>
<th>\text{allAnimal}</th>
<th>\neg</th>
</tr>
</thead>
<tbody>
<tr>
<td>\text{F}</td>
<td>\text{F}</td>
<td>\text{F}</td>
</tr>
<tr>
<td>\text{F}</td>
<td>\text{T}</td>
<td>\text{T}</td>
</tr>
<tr>
<td>\text{T}</td>
<td>\text{F}</td>
<td>\text{F}</td>
</tr>
<tr>
<td>\text{T}</td>
<td>\text{T}</td>
<td>\text{T}</td>
</tr>
</tbody>
</table>
DL Inference

- Inference can be expressed in terms of the model:
 - Satisfiability of C: C is non-empty
 - Subsumption $C \sqsubseteq D$ iff $C \subseteq D$ ("C is subsumed by $D")
 - Equivalence $C \equiv D$ iff $C = D$
 - Disjointness $(C \cap D) \perp \perp$ iff $C \cap D = \phi$
- Tractable/terminating inference algorithms exist

Example

MeatEater \equiv Yeats. Animal
Vegetarian \equiv Yeats. ~Animal
Omnivore \equiv Yeats. Animal

Query:
- a) Vegetarian \equiv MeatEater
 - No
- b) (MeatEater \cap Vegetarian) $\perp \perp$
 - No
- c) (Omnivore \cap Vegetarian) $\perp \perp$
 - Yes

Answer:

<table>
<thead>
<tr>
<th>MeatEater</th>
<th>Vegetarian</th>
<th>Omnivore</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\perp \perp$</td>
<td>$\perp \perp$</td>
<td>$\perp \perp$</td>
</tr>
</tbody>
</table>

FACT Algorithm

1. **The FACT tableaux method**
 - A tractable, extendable procedure
 - extendable to more expressive DLs than ALC e.g. with cardinality constraints and role expressions
 - Assume an unfoldable terminology
 - exclude: Human $\equiv \exists$hasParent. Human
 - Assume all definitions are necessary and sufficient \equiv
 - Proof is by unsatisfiability
 - To show C and D are disjoint or in a subsumption relation, a goal expression G is formed, and
 - the aim is to reject G
2. **4 steps:**
 - Steps 1-3 transform the goal into negation normal form
 - Step 4 constructs a tableaux (a labelled tree)

DL Inference

Inference has 2 equivalent notions - so implementing one lets us prove all 4 properties

- **Reduction to subsumption \sqsubseteq**:
 - Unsatisfiability of C: $C \subseteq \bot$
 - Equivalence $C \equiv D$ iff $C \subseteq D$ and $D \subseteq C$
 - Disjointness $(C \cap D) \perp \perp$

- **Reduction to unsatisfiability $C \cap D = \phi$**:
 - Subsumption $C \subseteq D$ iff $(C \cap \neg D)$ is unsatisfiable
 - Equivalence $C \equiv D$ iff $(C \cap \neg D)$ and $(D \cap \neg C)$ are unsatisfiable
 - Disjointness $(C \cap D)$ is unsatisfiable

FACT Algorithm

1. Given two expressions C and D, replace all defined terms by their definition, e.g. if $C \equiv E \perp F$ then replace C by $E \perp F$
 - Continue until all defined terms are replaced (E and F may be defined)
 - Do this for C to get C' and D to get D'
2. Construct the goal G
 - To show C and D are disjoint, G is $C' \cap D'$
 - To show $C \sqsubseteq D$, G is $C' \cap \neg D'$
3. Convert G to negation normal form using these equivalences:
 - $\neg \exists R. A = \exists R. \neg A$
 - $\neg \forall R. A = \forall R. \neg A$
 - $\neg (A \cap B) = \neg A \cup \neg B$
 - $\neg (A \cup B) = \neg A \cap \neg B$
 - As a result, the ‘not’ operator is pushed to the inner-most term and only atomic concept expressions are negated
FACT Algorithm

4. Tableaux method - FACT algorithm (Ian Horrocks) for ALC
 - The tableaux is represented by a tree
 - The tree is constructed from a root node, \(a_0 \), whose label is the goal \(G \): \(L(a_0) = \{G\} \)
 - Nodes represent individuals (\(a_0 \) and \(a_1 \) in the figure below)
 - Edges represent roles (relationships)
 - Edges are labelled with role names
 - If the edge \(<x,y> \) is labelled \(R \) then “\(y \) is an \(R \) successor of \(x \)”
 - \(L(x) \) is the label of node \(x \)
 - The individual \(x \) must be in the extension of every concept in \(L(x) \)
 - The tree contains a clash if \(\{C, \neg C\} \) is in \(L(x) \)

Tableaux method - rules that construct the tree

1. \(\cap \)-rule: \((C \cap D) \in L(x) \) then add \(C \) and \(D \) to \(L(x) \)
2. \(\cup \)-rule: \((C \cup D) \in L(x) \) then add \(C \) or \(D \) to \(L(x) \)
3. \(\exists \)-rule: \(\exists R.C \in L(x) \) then add \(L(<x,y>) = R \) (if it does not yet exist) and \(C \in L(y) \)
4. \(\forall \)-rule: \(\forall R.C \in L(x) \) then if \(C \) does not occur in \(L(y) \) add \(C \) to \(L(y) \)

Are Vegetarian and Omnivore disjoint?
Vegetarian \(\cap \) Omnivore \(\subseteq \bot \)

Replace named classes by their definition:
Vegetarian \(\equiv \) Yeats.\(\neg \)Animal
Omnivore \(\equiv \exists \)eats.Animal

Construct goal: Yeats.\(\neg \)Animal \(\cap \exists \)eats.Animal
{Yeats.\(\neg \)Animal \(\cap \exists \)eats.Animal} \[\text{already in NNF}\]

A) Are Vegetarian and Omnivore disjoint?
\(\{\text{Yeats.} \neg \text{Animal} \cap \exists \text{eats.Animal}\} \)
Apply 1 then 3 then 4.

\textbf{Description Logic}

Construct goal: Yeats.\(\neg \)Animal \(\cap \exists \)eats.Animal
{Yeats.\(\neg \)Animal \(\cap \exists \)eats.Animal} \[\text{already in NNF}\]

Apply 1 then 3 then 4.

A) Are Vegetarian and Omnivore disjoint?
\(\{\text{Yeats.} \neg \text{Animal} \cap \exists \text{eats.Animal}\} \)
Apply 1 then 3 then 4.

\textbf{Description Logic}

Are Vegetarian and Omnivore disjoint?
Vegetarian \(\cap \) Omnivore \(\subseteq \bot \)

Replace named classes by their definition:
Vegetarian \(\equiv \) Yeats.\(\neg \)Animal
Omnivore \(\equiv \exists \)eats.Animal

Construct goal: Yeats.\(\neg \)Animal \(\cap \exists \)eats.Animal
{Yeats.\(\neg \)Animal \(\cap \exists \)eats.Animal} \[\text{already in NNF}\]

A) Are Vegetarian and Omnivore disjoint?
\(\{\text{Yeats.} \neg \text{Animal} \cap \exists \text{eats.Animal}\} \)
Apply 1 then 3 then 4.

\textbf{Description Logic}

Are Vegetarian and Omnivore disjoint?
Vegetarian \(\cap \) Omnivore \(\subseteq \bot \)

Replace named classes by their definition:
Vegetarian \(\equiv \) Yeats.\(\neg \)Animal
Omnivore \(\equiv \exists \)eats.Animal

Construct goal: Yeats.\(\neg \)Animal \(\cap \exists \)eats.Animal
{Yeats.\(\neg \)Animal \(\cap \exists \)eats.Animal} \[\text{already in NNF}\]

A) Are Vegetarian and Omnivore disjoint?
\(\{\text{Yeats.} \neg \text{Animal} \cap \exists \text{eats.Animal}\} \)
Apply 1 then 3 then 4.
Description Logic

Are Vegetarian and MeatEater disjoint?
Vegetarian \(\cap \) MeatEater \(\perp \)
Replace named classes by their definition:
Vegetarian \(\equiv \) Yeats.\~Animal
MeatEater \(\equiv \) Yeats.Animal
Construct goal: Yeats.\~Animal \(\cap \) Yeats.Animal
\(\{\)Yeats.\~Animal \(\cap \) Yeats.Animal\(\} \) [already in NNF]
\(\{\)Yeats.\~Animal, Yeats.Animal\(\} \) [a0: by \(\exists \) elimination split term in \(L(a0) \)]
No more rules apply, therefore disjointness cannot be proven.
Note, \(\forall \) elimination cannot be applied unless an edge labelled eats already exists.

KMM ontology Lecture 3 / 4

Description Logic

Does Vegetarian subsume Omnivore?
Omnivore \(\equiv \) Vegetarian
Omnivore \(\cap \) \~Vegetarian \(\perp \)
Replace named classes by their definition:
Omnivore \(\equiv \) Yeats.Animal
Vegetarian \(\equiv \) Yeats.\~Animal
Construct goal: Yeats.Animal \(\cap \) \~Yeats.\~Animal
\(\{\)Yeats.Animal \(\cap \) \~Yeats.Animal\(\} \) [after conversion to NNF]
\(\{\)Yeats.Animal, \~Yeats.Animal\(\} \) [a0: by \(\exists \) elimination split term in \(L(a0) \), by \(\forall \) elimination add edge, and add \~Animal to \(L(a1) \), \(L(a1) = \{\)\~Animal\(\} \)]
[a0: \(\forall \) elimination would add \~Animal to \(L(a1) \)]
No more rules apply, subsumption is not proven

KMM ontology Lecture 3 / 4

Description Logic

Does MeatEater subsume Vegetarian?
Vegetarian \(\equiv \) Yeats.\~Animal
MeatEater \(\equiv \) Yeats.Animal
Replace named classes by their definition:
Vegetarian \(\equiv \) Yeats.\~Animal
MeatEater \(\equiv \) Yeats.Animal
Construct goal: Yeats.\~Animal \(\cap \) Yeats.Animal
\(\{\)Yeats.\~Animal \(\cap \) Yeats.Animal\(\} \) [after conversion to NNF]
\(\{\)Yeats.\~Animal, Yeats.\~Animal\(\} \) [a0: by \(\exists \) elimination split term in \(L(a0) \), by \(\forall \) elimination add edge, and add \~Animal to \(L(a1) \), \(L(a1) = \{\)\~Animal\(\} \)]
[a0: \(\forall \) elimination would add \~Animal to \(L(a1) \)]
No more rules apply, subsumption is not proven

KMM ontology Lecture 3 / 4

Description Logic

Show C and D are disjoint:
\[C \equiv \forall r.\~A \cap \forall r.\exists s.\~B \]
\[D \equiv \exists r.((\forall s.\exists B) \cup A) \]
[\(a0: \) Apply \(\exists \) elimination, then \(\forall \) elimination to create edge to \(a1 \).
Add \((\forall s.\exists B) \cup A \) to \(L(a1) \).
Apply \(\forall \) elim. to remaining \(a0 \) terms]

KMM ontology Lecture 3 / 4

Description Logic

Show C and D are disjoint:
\[C \equiv \forall r.\~A \cap \forall r.\exists s.\~B \]
\[D \equiv \exists r.((\forall s.\exists B) \cup A) \]
[\(a0: \) Apply \(\exists \) elimination, then \(\forall \) elimination to create edge to \(a1 \).
Add \((\forall s.\exists B) \cup A \) to \(L(a1) \).
Apply \(\forall \) elim. to remaining \(a0 \) terms]

KMM ontology Lecture 3 / 4
Description Logic

- Defining concepts:
 - Value restrictions are often combined with appropriate classes using intersection:
 - Vegan ≡ Person ⊓ Veats.Plant
 - Vegetarian ≡ Person ⊓ Veats.(Plant ⊓ Dairy)
 - Value restrictions may need an existential expression
 - If we want to prevent people who don’t eat at all being classified as Vegan:
 - Vegan ≡ Person ⊓ Veats.Plant ⊓ Veats.Fish
 - Classes are not disjoint by default
 - Explicit disjointness assertions are needed
 - For all does not imply some
 - Veats.Fish and Veats.¬Fish are not necessarily contradictory unless Veats. T

Description Logic

Tableaux method can be extended:
- Transitive roles, e.g. part-of is a transitive relation
- Number restrictions, e.g. ParentsWithThreeOrMoreChildren

General Terminologies
- C ⊑ D iff (C ∧ ¬D) = ∅ for all models I of T
- Add ¬C ⊑ D to all I(x) as a meta-constraint M
- Cope with non-terminating terminologies by a blocking rule
 - If the label occurs earlier in the tree then stop
 - Human ⊧ hasParent.Human
 - node (a1) is blocked showing satisfiability

More ‘Syntactic’ Proofs
- Is there a model for: Veats.¬Animal ⊓ Veats.Animal ?
 - [Previously, the tableaux was shown to have a clash]
- Apply the ¬∀ equivalence rule:
- There is no intersection between ¬P and P for any concept expression P, and so the answer is no
- The tableaux construction rules can be modified to detect such contradictions

Description Logic

Relationship to first-order logic (advanced topic)
- Necessity/All time/Knows
 - ∀R.C (x) = ∀y R(x, y) ⇒ φ(y) [for CN: ∀y R(x, y) ⇒ CN(y)]
 - ¬R.C (x) = ∃y R(x, y) ∧ φ(y) [for CN: ∃y R(x, y) ∧ CN(y)]

Modal Logics
- □ P iff ∀w r(v,w) ⇒ [P]w
- ◇ P iff ∃w r(v,w) ∧ [P]w

DL and (multi) modal K have the same duality between operators
- ◇R.C = ∃R.¬C
- □R.¬C = ¬R. ◇C
- □R.P = ◇R.¬P
- ◇R.¬P = □R.¬P

KMM ontology Lecture 3 / 4
Description Logics and their properties

- ALC
 - Sound and complete subsumption testing
- ALCN
 - ALC + number restriction \(\preceq R \)
- ALC\(\rightarrow \)
 - ALC + transitivity closed roles
- SHIQ
 - SH family: ALC + transitive roles and role hierarchy
- SHOQ(D)
 - Adds datatypes (D) and enumerated types to SHIQ
- SHIF(D)
 - Adds datatypes transitive roles and role hierarchy, plus functional attributes to SHIQ (OWL-Lite)
- SHOIN(D)
 - Adds nominals to class descriptions (oneOf \{a,b,c\}) and arbitrary cardinality constraints (OWL-DL)

Web Ontology Language: OWL

- Web Ontology Language (OWL) is W3C Recommendation for an ontology language for the web
 - Has an XML syntax
- OWL is layered on RDF and RDFS (other W3C standards)
 - Conforms to the RDF/RDFS semantics
- OWL has 3 versions:
 - OWL-Lite - the simpler OWL DL
 - OWL-DL - more expressive DL
 - OWL-Full - not confined to DL, closer to FOL
- OWL DLs extend ALC
 - Allow instances to be represented (A Box)
 - Provides datatypes
 - Provides number restrictions
- OWL 1.1 and 2 extend OWL DL

OWL Object Properties

OWL makes a distinction between Object types and Datatypes

Object types and Object properties are the same as in ALC

<table>
<thead>
<tr>
<th>CN, DN</th>
<th>Atomic concepts</th>
<th>Non-empty sets CN', DN' (C, D')</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C')</td>
<td>owl:Nothing</td>
<td>(\not!)</td>
</tr>
<tr>
<td>(T')</td>
<td>owl:Thing</td>
<td>(\not!)</td>
</tr>
<tr>
<td>(\neg C')</td>
<td>Full Negation</td>
<td>(\not! { C })</td>
</tr>
<tr>
<td>(C \cup D')</td>
<td>Union</td>
<td>(C' \cup D')</td>
</tr>
<tr>
<td>(C \cap D')</td>
<td>Intersection</td>
<td>(C' \cap D')</td>
</tr>
<tr>
<td>((\exists R.C))</td>
<td>Value restriction</td>
<td>({ x \in \not!</td>
</tr>
<tr>
<td>((\exists R.C))</td>
<td>Full existential quantification</td>
<td>({ x \in \not!</td>
</tr>
</tbody>
</table>

Terminological axioms: Inclusions and equalities

Concepts: \(C \sqsubseteq D \) iff \(C' \sqsubseteq D' \)
\[C \equiv D \iff C' = D' \]

OWL Datatypes

- Datatypes \(D' \) are distinct from Object types \(D' \)
 - A datatype relation \(U \), e.g. age, relates an object type, e.g. Person to an integer
 - \(\# \text{Age.Integer} \) [the set of things that have some Integer as age]
 - Data types correspond to XML Schema types
 - OWL also provides hasValue: \(U:v \) to represent specific datatype values
 - \(\text{age:29} \) [the set of things age 29]

<table>
<thead>
<tr>
<th>D</th>
<th>Data Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>D'</td>
<td>(D' \sqsubseteq \Delta D)</td>
</tr>
<tr>
<td>(\forall U.D)</td>
<td>Value restriction</td>
</tr>
<tr>
<td>(\exists U.D)</td>
<td>Full existential quantification</td>
</tr>
</tbody>
</table>

OWL Number Restrictions

- OWL adds (unqualifying) number restrictions to ALC
 - Defines the set of instances, x, for which there n or more instances, y, such that $R(x, y)$
 - BusyParent ≥ 3 hasChild
 - Defines the set of instances, x, for which there n or less instances, y, such that $R(x, y)$

| $\geq n R$ | Minimum cardinality $\{x \in \Delta^I \mid \#(<x, y> \in R) \geq n\}$ |
| $\leq n R$ | Maximum cardinality $\{x \in \Delta^I \mid \#(<x, y> \in R) \leq n\}$ |

Disjointness axioms

Assume C and D are asserted to be disjoint in Protégé - example of an axiom.
Q. Can anything be a subset of C and D?
Define a new class: TestClass $\equiv C \cap D$
Goal: $C \cap D$
$L(a_0) = \{C \cap D\}$
$L(a_0) = \{C, D\} \text{ no clash}$

Disjointness means: $\top \not\subseteq \neg C \cup \neg D$ [equivalent to $C \cap D \models \bot$]
$L(a_0) = \{C, D, \neg C \cup \neg D\}$

Using OWL

- Datatypes Δ_D^I and Object types Δ^I

<table>
<thead>
<tr>
<th>Δ_D^I, Δ^I</th>
<th>Non-empty sets Δ_D^I, Δ^I</th>
</tr>
</thead>
<tbody>
<tr>
<td>BN, CN $\subseteq \Delta_D^I$</td>
<td>Non-empty sets Δ_D^I, Δ^I</td>
</tr>
<tr>
<td>D $\subseteq \Delta_D^I$</td>
<td>${x \in \Delta^I \mid x \in \text{BN} \lor x \in \text{CN}}$</td>
</tr>
<tr>
<td>$(\text{B} \cup \text{C})^I$</td>
<td>${x \in \Delta^I \mid x \in \text{B} \lor x \in \text{C}}$</td>
</tr>
<tr>
<td>$(\text{B} \cap \text{C})^I$</td>
<td>${x \in \Delta^I \mid x \in \text{B} \land x \in \text{C}}$</td>
</tr>
<tr>
<td>$(\forall \text{R.C})^I$</td>
<td>${x \in \Delta^I \mid \forall y (<x, y> \in \text{R} \Rightarrow y \in \text{C})}$</td>
</tr>
<tr>
<td>$(\exists \text{R.C})^I$</td>
<td>${x \in \Delta^I \mid \exists y <x, y> \in \text{R} \land y \in \text{C}}$</td>
</tr>
<tr>
<td>$(\forall \text{U.D})^I$</td>
<td>${x \in \Delta^I \mid \forall y (<x, y> \in \text{U} \Rightarrow y \in \text{D})}$</td>
</tr>
<tr>
<td>$(\exists \text{U.D})^I$</td>
<td>${x \in \Delta^I \mid \exists y <x, y> \in \text{U} \land y \in \text{D}}$</td>
</tr>
</tbody>
</table>

OWL-DL Cardinality

- Cardinality

<table>
<thead>
<tr>
<th>Δ_D^I, Δ^I</th>
<th>Non-empty sets Δ_D^I, Δ^I</th>
</tr>
</thead>
<tbody>
<tr>
<td>BN, CN $\subseteq \Delta_D^I$</td>
<td>Non-empty sets Δ_D^I, Δ^I</td>
</tr>
<tr>
<td>$(\forall \text{R.C})^I$</td>
<td>${x \in \Delta^I \mid \forall y (<x, y> \in \text{R} \Rightarrow y \in \text{C})}$</td>
</tr>
<tr>
<td>$(\exists \text{R.C})^I$</td>
<td>${x \in \Delta^I \mid \exists y <x, y> \in \text{R} \land y \in \text{C}}$</td>
</tr>
<tr>
<td>$(\exists \text{R.C})^I$</td>
<td>${x \in \Delta^I \mid \exists y <x, y> \in \text{R} \land y \in \text{C}}$</td>
</tr>
<tr>
<td>$(\forall \text{U.D})^I$</td>
<td>${x \in \Delta^I \mid \forall y (<x, y> \in \text{U} \Rightarrow y \in \text{D})}$</td>
</tr>
<tr>
<td>$(\exists \text{U.D})^I$</td>
<td>${x \in \Delta^I \mid \exists y <x, y> \in \text{U} \land y \in \text{D}}$</td>
</tr>
</tbody>
</table>

hasWheel$^I = \{<a_0, a_1>, <a_0, a_2>\}$ therefore:
$\geq 0 \text{ hasWheel}; \geq 1 \text{ hasWheel}; \geq 2 \text{ hasWheel};$ and
$\leq 2 \text{ hasWheel}; \leq 2 \text{ hasWheel}; \leq 3 \text{ hasWheel} \ldots$
OWL-DL Cardinality

Bicycle ≡ \(\exists 2 \text{hasWheel} \land \forall \text{hasPart.} \sim \text{Engine} \)

- Unicycles would have 1 wheel, tricycles 3 wheels, motorcycles would have 2 wheels and an Engine……
- hasWheel is needed, rather than hasPart, as OWL-DL cannot specify the type of the range to be Wheel
 - Define hasWheel a subProperty of hasPart
 - Range of hasWheel: Wheel
- An example of ‘bias’ being introduced because of the expressivity of the representation

Domain and range specifications

\[
domain(R, C) :: \exists 1 R \subseteq C
\]

Consider:

1) \(\exists \text{hasChild.Male} : \) anything with a male child
2) \(\exists \text{Person} \land \exists \text{hasChild.Male} : \) person with a male child:

The Person intersection in 2) is implicit in 1) if the domain of hasChild is defined as Person

\[
range(R, C) :: \top \subseteq \forall R.C
\]

Resource Description Framework (RDF)

- RDF is a W3C standard, pre-dating OWL, for web semantics
- Identifies ‘things’ through URIs, and describes them in terms of simple properties and property values
- The triple is the basic unit: <subject predicate object>
 - Example: <http://www.example.org/index.html dc:creator http://www.example.org/staffid/85740>
- Subjects and objects are viewed as nodes in a graph, where predicates label the edges
 - Example: dc:creator ns2:85740
 - dc:date "03/03/2004"
- In RDF, predicates represent relationships between resources
 - But RDF provides no way to define these predicates, or state other ontological properties
 - RDF Schema addresses some of these problems

RDF and RDF Schema (RDFS)

- RDFS allows subclasses and the domain and range of properties to be defined (http://www.w3.org/TR/rdf-schema/)
 - e.g. to state that creator has domain Document and range Person, two triples are needed:
 - `<dc:creator rdfs:domain ns:Document>`
 - `<dc:creator rdfs:range ns:Person>`
- RDF Schema
 - rdf:Property the class of properties, an instance of rdfs:Class
 - rdfs:Resource the class of everything
 - rdf:Literal the class of literal values e.g. string, integer
 - rdf:Literal the class of RDF classes
- There is no effective reasoning algorithm for RDFS
 - hence, OWL
OWL Abstract Syntax

- The ALC-style syntax is not suitable for the WWW
- OWL needs to conform to the RDF/XML syntax

<table>
<thead>
<tr>
<th>OWL/ALC DL Syntax</th>
<th>OWL Abstract Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>(¬C)</td>
<td><complementOf C></td>
</tr>
<tr>
<td>(C U D)</td>
<td><unionOf C D></td>
</tr>
<tr>
<td>(C I D)</td>
<td><intersectionOf C D></td>
</tr>
<tr>
<td>(V R C)</td>
<td><Restriction></td>
</tr>
<tr>
<td></td>
<td><onProperty R></td>
</tr>
<tr>
<td></td>
<td><allValuesFrom C></td>
</tr>
<tr>
<td>(∃R C)</td>
<td><Restriction></td>
</tr>
<tr>
<td></td>
<td><onProperty R></td>
</tr>
<tr>
<td></td>
<td><someValuesFrom C></td>
</tr>
<tr>
<td>(C ⊥ D)</td>
<td><disjoint C D></td>
</tr>
<tr>
<td>C ⊆ D</td>
<td><C <subClassof D>></td>
</tr>
<tr>
<td>C = D</td>
<td><C <equivalentClass D>></td>
</tr>
</tbody>
</table>

OWL in RDF/XML Syntax

- Protégé reads and writes this syntax!
- Use HP’s Jena toolkit in Java applications that need to read/write/manipulate RDF/S or OWL.

Class definitions C ⊆ D and Property restrictions V R.C in RDF/XML syntax:

DieselEngine is a subclass of Engine:

```
<owl:Class rdf:ID="DieselEngine"
    rdf:about="#Engine">
    <rdfs:subClassOf rdf:resource="#Engine"/>
</owl:Class>
```

CarPart is a subclass of the parts of the Car:

```
<owl:Class rdf:ID="CarPart">
    <rdfs:subClassOf rdf:resource="#partOf.Car"/>
</owl:Class>
```

CarEngine is equivalent to the intersection of Engine and ∃partOf.Car:

```
<owl:Class rdf:ID="CarEngine">
    <owl:equivalentClass>
        <owl:Class rdf:about="#Engine"/>
        <owl:intersectionOf rdf:parseType="Collection">
            <owl:Class rdf:about="#Engine"/>
            <owl:Restriction>
                <owl:onProperty rdf:resource="#partOf.Car"/>
                <owl:allValuesFrom rdf:resource="#Car"/>
            </owl:Restriction>
        </owl:intersectionOf>
    </owl:equivalentClass>
</owl:Class>
```

Protégé reads and writes this syntax!

Use HP’s Jena toolkit in Java applications that need to read/write/manipulate RDF/S or OWL.

OWL

- Is a web-compatible ontology language
- Syntax based on RDF/XML
- Semantics compatible with RDF and RDFS
- OWL-Lite and OWL-DL have a formal interpretation based on DLs
- Extensive documentation at http://www.w3c.org

Editing Tools
- Protégé 4