Description Logic and OWL

Description Logic

- An important element of the Semantic Web
- Has a well-defined semantics
 - » A Concept is a non-empty set
 - » Enables subsumption (subClassOf relations) to be computed
- Tractable inference algorithms

OWL (Web Ontology Language)

- An ontology language for the Semantic Web W3C standard Data
- Based on Description Logic
- RDF/XML syntax
- OWL 1.1 and 2
 - Extend OWL
 - Modify syntax

KMM ontology Lecture 3 / 4

Self-

desc.

doc.

Trust

Proof

Logic

Ontology vocabulary

Data

Description Logic

2

- Description Logics allow formal concept definitions that can be reasoned about to be expressed
 - Example Concept definitions: _ Woman ≡ Person ⊓ Female

Man ≡ Person ⊓ ¬Woman

- Not a single logic, but a family of KR logics originating from KL-One e.g. AL, ALC,...,SHIQ,...SHIN(D)
- Subsets of first-order logic
- Well-defined model theory
- Known computational complexity

FACT inference algorithm

- Prove subsumption _
- Prove disjointness _

Further reading (not required reading):

- Horrocks, Ian. (1997) Optimising tableaux decision procedures for
- Description Logics, and many papers on-line
- Baader, F., Calvanese, D., McGuiness, D., Nardi, D., and Patel-Schneider, P. Description Logic Handbook (Chapter 2)

Description Logic

- A Classifier (a reasoning engine) can be used to construct the class hierarchy from the definitions of individual concepts in the ontology
- Concept definitions are composed from primitive elements and so the ontology is more maintainable

Description Logics separate assertions and concept definitions

- A Box: Assertions
 - E.g. hasChild(john, mary) _
 - This is the knowledge base _ (we will not look at this aspect)
- T Box: Terminology
 - The definitions of concepts in the ontology
 - Example axioms for definitions
 - » $C \sqsubseteq D$ [C is a subclass of D, D subsumes C]
 - $C \equiv D$ [C is defined by the expression D] »

Description Logic Terminology

Important terminology:

- Concept: class, category or type (as introduced earlier)
- Role: binary relation
 - Attributes are functional roles
- Subsumption:
 - D subsumes C if C is a subclass of D
 - i.e. All Cs are Ds
- Unfoldable terminologies:
 - The defined concept does not occur in the defining expression
 - C = D where C does not occur in the expression D
- Language families
 - AL: Attributive Language
 - ALC adds full negation to AL

KMM ontology Lecture 3 / 4

Description Logic

Language elements for concept expressions:

- \perp 'Bottom' the empty set
- CN Concept name
- C Concept expression
- R Role expressions, limited to RN Role Names
- **¬** 'Not' forms the complement of a concept
- U 'Union' forms the union (OR) of two concepts
- □ Intersection' forms the intersection (AND) of two concepts
- ∀ 'Value restriction'
- 3 'Exists restriction'

Grammar for C: $\perp \mid \top \mid$ CN $\mid \neg$ C $\mid \mid$ C $\mid \mid$ D \mid C $\mid \mid$ D $\mid \mid$ VR.C $\mid \exists$ R.C

KMM ontology Lecture 3 / 4

Description Logic

7

Language elements for terminological axioms:

 $C \equiv D$ 'is defined by' C is equivalent to D

 $C \equiv D$ 'is subsumed by' C is subsumed by/is a subclass of D Terminological axioms make assertions about concept expressions. Grammar for terminological axioms:

 $\mathsf{C} \equiv \mathsf{D} \mid \mathsf{C} \sqsubseteq \mathsf{D}$

The cases of most interest are where CN is given a

'necessary and sufficient definition': CN = D
And where CN is given a
'necessary definition': CN ⊑ D

Description Logic ALC

CN, DN	Atomic concept	Sets CN, DN
Ť	Bottom	Empty set
Т	Universal concept, Top	Universal set
٦C	Full Negation	Complement of C
CUD	Union	Union of C and D
СПD	Intersection	Intersection of C and D
∀R.C	Value restriction	The set $\{x \forall y R(x, y) \Rightarrow y \in C\}$
3R.C	Full existential restriction	The set {x ∃y R(x, y)∧ y∈C}

Terminological axioms: Inclusions and equalities Concepts: $C \sqsubseteq D$ and $C \equiv D$ Roles: $R \sqsubseteq S$ and $R \equiv S$

Description Logic ALC

Example concept expressions:

Plant

а

h

Plant ⊓ Animal ⊑ ⊥

(disjointness)

- Parent = "Persons who have (amongst other things) some children" Person ⊓ ∃hasChild. ⊤
- ParentOfBoys = "Persons who have some children, and only have children that are male" Person Π (\exists hasChild. \top) Π (\forall hasChild.Male)
- ScottishParent = "Persons who <u>only</u> have children that drink (amongst other things) some IrnBru" Person ⊓ (∀hasChild. (∃drink.lrnBru))
- Each term (atomic or compound) defines a set as given by the righthand column in the table
 - The model theory makes this more formal _

KMM ontology Lecture 3 / 4

Value and Exists Restrictions

{a,b,c,d,e,f} are instances; Plant and Animal are classes

eats

eats

Animal

eats

⊤ ⊑ Plant ⊔ Animal

(partition)

Description Logic ALC

ALC Model Theory: (wff)ⁱ = {...a set...}; Rⁱ is a set = {<d,r>,...}

CN ^I , DN ^I	Atomic concepts	Non-empty sets CN ⁱ , DN ⁱ ⊆∆ ⁱ
Τı	Bottom	ф
Τ	Universal concept, Top	$\Delta^{\mathbf{I}}$
י(ר)	Full Negation	Δ ^I \ C ^I
(С Ц D) ^і	Union	C'∪ D'
(С П D) ^і	Intersection	С'∩ ם'
(∀R.C) ^ı	Value restriction	$\{\mathbf{x} \in \triangle^{I} \mid \forall \mathbf{y} < \mathbf{x}, \mathbf{y} > \in R^{I} \Rightarrow \mathbf{y} \in C^{I}\}$
(JR.C) ^I	Full existential restriction	$\{x \in \Delta^i \mid \exists y < x, y > \in R^i \land y \in C^i\}$

Terminological axioms: Inclusions and equalities Concepts: $C \sqsubseteq D$ iff $C^{I} \subseteq D^{I}$ $C \equiv D$ iff $C^{\dagger} = D^{\dagger}$

Value and Exists Restrictions

{a,b,c,d,e,f} are instances; Plant and Animal are classes

Jeats.Animal = {c,d,e} ∃eats.Animal □ ∀eats.Animal = {c.e}

KMM ontology Lecture 3 / 4

Description Logic ALC

Model Theory

Δ^{I} universal domain of individuals, $\Delta^{I} = \{a,b,c,d,e,f\}$, let
eats ^I set of pairs for the relation ea	ats, let
eats ^I = { <d,a>,<d,e>,<e,d>,<e,f< td=""><td>>,<c,f>}</c,f></td></e,f<></e,d></d,e></d,a>	>, <c,f>}</c,f>
For all concepts C:	MeatEater ≡ ∀eats. Animal = {a,b,c,e,f}
i) C ^I ⊆ Δ ^I	Vegetarian≡ ∀eats. ¬Animal = {a,b,f}
ii)C ^I <i>幸</i> φ	Omnivore ≡ ∃eats. Animal = {c,d,e}
Let Animal ^I = {d,e,f} ∴ (¬Animal) ^I = {a,b,c} ∴ (∀eats. Animal) ^I = {a,b,c,e,f} ∴ (∃eats. Animal) ^I = {c,d,e}	Inference: So MeatEater subsumes Vegetarian and Vegetarian is disjoint from Omnivore in this model, by these definitions - BUT the problem is to prove properties for ALL models

KMM ontology Lecture 3 / 4

Value and Exists Restrictions

{a,b,c,d,e,f} are instances; Plant and Animal are classes

ALC: Value Restriction

Value restrictio R is a binary re C is a concept of	n: ∀R.C lation, e.g. eats(x, y) expression, e.g. Animal
Consider:	Veats. Animal "things that eat only Animal"
defines the	set <mark>x:</mark> ∀y if eats(<mark>x,</mark> y) then y ∈ Animal
In the formal m by a set o	odel theory, where the domain is Δ^{I} , eats is represented fuples, e.g.
$aats^{ } = \int dats^{ } dats^{$	ch a> <a +="" <a="" <a<="" d="" d)="" td="">

e,d>,<e,t>,<c,t>} meaning eats(d,a) eats(d,e)... Animal | = {d,e,f}

The set corresponding to Veats. Animal is:

 ${x \in \Delta^{l} \mid \forall y < x, y > \in eats^{l} \Rightarrow y \in Animal^{l}} = {a, b, c, e, f}$ In general, ∀R.C is interpreted as: $\{x \in \Delta^i \mid \forall y < x, y > \in \mathbb{R}^i \Rightarrow y \in \mathbb{C}^i\}$

Existential restriction:	BR.C
R is a binary relation, e	e.g. eats(x, y)
C is a concept express	sion, e.g. Animal
Consider:	Beats. Animal "things that eat some Animal"
defines the set x:	$\exists y eats(x, y) and y \in Animal$
	t
In the formal model the by a set of tuples	eory, where the domain is Δ^{l} , eats is represented s, e.g.
eats ⁱ = { <d,a>,<d,e>,<e< td=""><td>e,d>,<e,f>,<c,f>} meaning eats(d, a) eats(d, e)</c,f></e,f></td></e<></d,e></d,a>	e,d>, <e,f>,<c,f>} meaning eats(d, a) eats(d, e)</c,f></e,f>
Animal ⁱ = {b,e}	
The set corresponding	to Beats. Animal is:
$\{x \in \Delta^{I} \mid \exists y < x, y > \in eat\}$	ts ⁱ ∧ y∈ Animal ⁱ } = {c,d,e}
In general, JR.C is inte	rpreted as:
$x \in \Delta^{i} \mid \exists y < x, y > \in \mathbb{R}^{i}$	∧ y∈C'}

DL Inference

- Inference can expressed in terms of the model
 - Satisfiability of C: C^I is non-empty
 - Subsumption C ⊑ D iff $C^{I} \subseteq D^{I}$ ("C is subsumed by D")
 - Equivalence $C \equiv D$ iff $C^{\dagger} = D^{\dagger}$
 - Disjointness (C ⊓ D) $\sqsubseteq \bot$ iff C¹ ∩ D¹ = φ
- Tractable/terminating inference algorithms exist

KMM ontology Lecture 3 / 4

DL Inference

Inference has 2 equivalent notions - so implementing one lets us prove all 4 properties

- Reduction to subsumption ⊑ :
 - <u>Unsatisfiability</u> of C: $C \sqsubseteq \bot$
 - Equivalence $C \equiv D$ iff $C \subseteq D$ and $D \subseteq C$
 - Disjointness (C ⊓ D) ⊑ ⊥
- Reduction to unsatisfability Cⁱ = φ:
 - Subsumption $C \sqsubseteq D$ iff $(C \sqcap \neg D)$ is unsatisfiable
 - Equivalence $C \equiv D$ iff $(C \sqcap \neg D)$ and $(D \sqcap \neg C)$ are unsatisfiable
 - Disjointness (C ⊓ D) is unsatisfiable

KMM ontology Lecture 3 / 4

FACT Algorithm

- The FACT tableaux method
 - A tractable, extendable procedure
 - » extendable to more expressive DLs than ALC e.g. with cardinality constraints and role expressions
 - Assume an unfoldable terminology
 - » exclude: Human ≡ ∃hasParent. Human
 - Assume all definitions are necessary and sufficient ≡
 - Proof is by unsatisfiability
 - » To show C and D are disjoint or in a subsumption relation, a goal expression G is formed, and
 - » the aim is to reject G
- 4 steps:
 - Steps 1-3 transform the goal into negation normal form
 - Step 4 constructs a tableaux (a labelled tree)

FACT Algorithm

- Given two expressions C and D, replace all defined terms by their definition, e.g. if $C \equiv E \sqcap F$ then replace C by $E \sqcap F$
 - Continue until all defined terms are replaced (E and F may be defined)
 - Do this for C to get C' and D to get D'
- 2. Construct the goal G
 - To show C and D are disjoint, G is C' Π D'
 - To show C ⊑ D , G is C' Π ¬D'
- 3. Convert G to negation normal form using these equivalences: ¬∀R.A = ∃R.¬A
 - ר. אר = R.A= אר. ¬A
 - ¬ (АПВ) = ¬АЦ¬В
 - ¬(АЦВ) = ¬АП¬В
 - As a result, the 'not' operator is pushed to the inner-most term and only atomic concept expressions are negated

FACT Algorithm

- 4. Tableaux method FACT algorithm (lan Horrocks) for ALC
- The tableaux is represented by a tree
- The tree is constructed from a root node, a0, whose label is the goal G: L(a0) = {G}
- Nodes represent individuals (a0 and a1 in the figure below)
- Edges represent roles (relationships)
 - Edges are labelled with role names
 - If the edge <x,y> is labelled R then "y is an R successor of x"
- L(x) is the label of node x
 - The individual x must be in the extension of every concept in L(x)
- The tree contains a clash if {C, ¬C} ⊆ L(x)

KMM ontology Lecture 3 / 4

FACT Algorithm

Tableaux method - rules that construct the tree

- 1. \square -rule: (C \square D) \in L(x) then add C and D to L(x) (a) {C \square D} => (a) {C,D}
- 2. \sqcup -rule: (C \sqcup D) \in L(x) then add C or D to L(x) (a) {C \sqcup D} => (a) {C} OR {D}

3-rule: $\exists R.C \in L(x)$ then add $L(\langle x, y \rangle) = R$ (if it does not yet exist) and $C \in L(y)$

(a) {3R.C} add an edge R to a new node {C} (unless both exist already) R

(**C**}

3.

- ∀-rule:∀R.C ∈ L(x) then IF there is some y s.t. L(<x,y>)=R and L(y) does not contain C, add C to L(y)
 - ⓐ {VR.C} and if there is an edge labelled R
 - R (a1{C}

KMM ontology Lecture 3 / 4

FACT Algorithm

Tableaux method - summary of rules

- 1. Π -rule: (C Π D) \in L(x) then add C and D to L(x)
- 2. \amalg -rule: (C \amalg D) \in L(x) then add C or D to L(x)
- 3. ∃-rule: ∃R.C ∈ L(x) then add L(<x,y>)=R (if it does not yet exist) and C ∈ L(y)
- 4. ∀-rule:∀R.C ∈ L(x) then IF there is some y s.t. L(<x,y>)=R and L(y) does not contain C, add C to L(y)

A)Are Vegetarian and Omnivore disjoint ?	
{(∀eats.¬Animal) ⊓ (∃eats.Animal)}	Apply 1 then 3 then 4.
(↓) (↓) (↓) (↓) (↓) (↓) (↓) (↓) (↓) (↓)	
eats (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	
KMM ontology Lecture 3 / 4	

Are Vegetarian and Omnivore disjoir	nt?
Vegetarian ⊓ Omnivore ⊑ ⊥	
Replace named classes by their defi	nition:
Vegetarian ≡ ∀eats.¬Animal	
Omnivore ≡ ∃eats.Animal	
Construct goal: ∀eats.¬Animal ⊓ ∃ea	ats.Animal
{∀eats.¬Animal ⊓ ∃eats.Animal	} [already in NNF]
എ {∀eats.¬Animal, ∃eats.Animal}	[a0:by ⊓ elimination split term in L(a0),
<u> </u>	by ∃ elimination add edge, and add
leats	Animal to L(a1), L(a1)={Animal}]
$\sum_{i=1}^{n}$	[a0:by ∀ elimination add ¬Animal to L(a1)
الاعتار (Animal, ¬Animal}	Proven: tableaux shows a clash in L(a1)

Description Logic

 Are Vegetarian and MeatEater disjoint?

 Vegetarian ⊓ MeatEater ⊑ ⊥

 Replace named classes by their definition:

 Vegetarian ≡ Veats.¬Animal

 MeatEater ≡ Veats.¬Animal

 Construct goal: Veats.¬Animal ⊓ Veats.Animal

 (a)

 {Veats.¬Animal ⊓ Veats.Animal}

 [already in NNF]

 (a)

 {Veats.¬Animal, Veats.Animal}

 [already in Split term in L(a0)]

No more rules apply, therefore disjointness cannot be proven.

Note, ∀ elimination cannot be applied unless an edge labelled eats already exists.

KMM ontology Lecture 3 / 4

Description Logic

Does MeatEater subsume Vegetarian? Vegetarian ⊑ MeatEater Vegetarian ⊓ ¬MeatEater ⊑ ⊥ Replace named classes by their definition: Vegetarian ≡ ∀eats.¬Animal MeatEater ≡ ∀eats.Animal Construct goal: ∀eats.¬Animal ¬∀eats.Animal {Veats.¬Animal ⊓ ∃eats. ¬Animal} [after conversion to NNF] {Veats.¬Animal, Heats. ¬Animal} [a0: by \square elimination split term in L(a0), 60 by \exists elimination add edge, and add eats ¬Animal to L(a1), L(a1)={¬Animal}] [a0: ∀ elimination would add ¬Animal to L(a1)] a {¬Animal} no more rules apply, subsumption is not proven

KMM ontology Lecture 3 / 4

Description Logic

Does Vegetarian subsume Omnivor	e?		
Omnivore ⊑ Vegetarian			
Omnivore ⊓ ¬Vegetarian ⊑ ⊥			
Replace named classes by their defi Omnivore ≡ ∃eats.Animal Vegetarian ≡ ∀eats ⊐Animal	nition:		
Construct goal: ∃eats.Animal ⊓ ∀	eats.¬Animal		
{∃eats.Animal ⊓ ∃eats.Animal}	[after conversion to N	NF]	
(∃eats.Animal, ∃eats.Animal)	[a0: by ⊓ elimination s	split term in L	(a0),
by	E elimination add edg	e, and add	
eats	Animal to L(a1), L(a1)	={Animal}]	
$\mathbf{\lambda}$			
(a) {Animal} no more ru	les apply, subsumptio	n is not prove	en
		Model: $\Delta^{I} = \{a0, a1\}$	
		Animal ¹ = $\{a1\}$	

KMM ontology Lecture 3 / 4

Description Logic

- Defining concepts:
 - Value restrictions are often combined with appropriate classes using intersection:
 Vegan = Person Π Veats.Plant
 - Vegetarian = Person Π Veats.(Plant \amalg Dairy)
 - Omnivore ≡ Person Π ∃eats.Animal Π ∃eats.(Plant Ц Dairy)
 - Value restrictions may need an existential expression
 - » If we want to prevent people who don't eat at all being classified as Vegan:
 - Vegan ≡ Person Π ∀eats.Plant Π ∃eats.Plant
 - Classes are not disjoint by default
 - » Explicit disjointness assertions are needed
 - Forall does not imply some
 ∀eats.Fish and ∀eats.¬Fish are not necessarily contradictory unless ∃eats. ⊤

Description Logic

Tableaux method can be extended:

- Transitive roles, e.g. *part-of* is a transitive relation
- Number restrictions, e.g. ParentsWithThreeOrMoreChilden

General Terminologies

- $C \sqsubseteq_T D$ iff $(C \sqcap \neg D)^i = \phi$ for all models I of T
- Add ¬C ⊔ D to all L(x) as a meta-constraint M
- Cope with non-terminating terminologies by a blocking rule
 - If the label occurs earlier in the tree then stop
 - Human ⊑ ∃hasParent.Human
 - node (a1) is blocked showing satisifiability

Description Logic

More 'Syntactic' Proofs

- Is there a model for: ∀eats.¬Animal ⊓ ∃eats.Animal ? [Previously, the tableaux was shown to have a clash]
- Apply the ¬∀ equivalence rule:
 - Veats.¬Animal Π Jeats.Animal =
 - ¬∃eats.Animal Π ∃eats.Animal =
 - $\neg P \prod P$ for P= $\exists eats.Animal$
 - There is no intersection between ¬P and P for any concept expression P, and so the answer is no
- The tableaux construction rules can be modified to detect such contradictions

Relationship to first-order logic (advanced topic)

 $\phi_{\forall R,C}(x) = \forall y \ R(x, y) \Rightarrow \phi_{C}(y)$ $\phi_{\exists R,C}(x) = \exists y \ R(x, y) \land \phi_{C}(y)$

 $\begin{array}{ll} (y) \Rightarrow \phi_{C}(y) & [\text{for CN: } \forall y \ \mathsf{R}(x, y) \Rightarrow \mathsf{CN}(y) \] \\ (y) \wedge \phi_{C}(y) & [\text{for CN: } \exists y \ \mathsf{R}(x, y) \wedge \mathsf{CN}(y) \] \end{array}$

Modal Logics

 □ Necessity/All time/Knows
 [□P]_v iff ∀w r(v,w) ⇒ [P]_w
 Possibility/Some time/Believes
 [◊P]_v iff ∃w r(v,w) ∧ [P]_w

DL and (multi) modal K ha	we the same duality between operators
ר-∀R.C = ∃R.¬C	ר _R P = ♦ _R ר
ר-RC = ∀R. ¬C	ר _R P = □ _R רP

Description Logics and their properties

ALC

- Sound and complete subsumption testing
- ALCN
 - ALC + number restriction \ge n R
- ALC_{R+}
 - ALC + transitively closed roles
- SHIQ
 - SH family: ALC + transitive roles and role hierarchy
- SHOQ(D)
 - Adds datatypes (D) and enumerated types to SHIQ
- SHIF(D)
 - Adds datatypes transitive roles and role hierarchy, plus functional attributes to SHIQ (OWL-Lite)
- SHOIN(D)
 - Adds nominals to class descriptions (oneOf {a,b,c}) and arbitrary cardinality constraints (OWL-DL)

Web Ontology Language: OWL

- Web Ontology Language (OWL) is W3C Recommendation for an ontology language for the web
 - Has an XML syntax
- OWL is layered on RDF and RDFS (other W3C standards)
 - Conforms to the RDF/RDFS semantics
- OWL has 3 versions:
 - » OWL-Lite the simpler OWL DL
 - » OWL-DL more expressive DL
 - » OWL-Full not confined to DL, closer to FOL
- OWL DLs extend ALC
 - » Allow instances to be represented (A Box)
 - » Provides datatypes
- » Provides number restrictions
- OWL 1.1 and 2 extend OWL DL

KMM ontology Lecture 3 / 4

OWL Object Properties

OWL makes a distinction between Object types and Datatypes Object types and Object properties are the same as in ALC

CN, DN	Atomic concepts	Non-empty sets CN ^I , DN ^I ⊆ ∆ ^I
Τı	owl:Nothing	ф
די	owl:Thing	Δ^{I}
י(C) ^ו	Full Negation	Δ ¹ \ C ¹
(C ∐ D) ^ı	Union	C'∪ D'
(C 🗖 D) ⁱ	Intersection	ים ∩ י
(∀R.C) ⁱ	Value restriction	$\{x \in \Delta^{i} \mid \forall y < x, y > \in R^{i} \Rightarrow y \in C^{i}\}$
(3R.C) ⁱ	Full existential quantification	$\{x \in \Delta^i \mid \exists y < x, y > \in R^i \land y \in C^i\}$

KMM ontology Lecture 3 / 4

Terminological axioms: Inclusions and equalities

Concepts: $C \sqsubseteq D$ iff $C^{I} \subseteq D^{I}$

 $C \equiv D$ iff $C^{i} = D^{i}$

OWL Datatypes

- Datatypes Δ^I_D are distinct from Object types Δ^I
 - A datatype relation U, e.g. age, relates an object type, e.g. Person to an integer
 - » **Jage.Integer** [the set of things that have some Integer as age]
 - Data types correspond to XML Schema types
 - OWL also provides hasValue: U:v to represent specific datatype values
 - » age:29 [the set of things age 29]

D	Data Range	D'⊆∆ _D '
(∀ U.D) ¹	Value restriction	$\{\mathbf{x} \in \Delta^{I} \mid \forall \mathbf{y} < \mathbf{x}, \mathbf{y} > \in U^{I} \Rightarrow \mathbf{y} \in D^{I} \}$
(d.UE)	Full existential quantification	$\{\mathbf{x} \in \Delta^{i} \mid \exists \mathbf{y} < \mathbf{x}, \mathbf{y} > \in U^{i} \land \mathbf{y} \in D^{i} \}$

Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen. From SHIQ and RDF to OWL: The making of a web ontology language. J. of Web Semantics, 1(1):7-26, 2003.

OWL Number Restrictions

- OWL adds (unqualifying) number restrictions to ALC ≥ n R
 - Defines the set of instances, x, for which there n or more instances, y, such that R(x, y)
 - BusyParent = ≥ 3 hasChild
 - ≤ n R
 - Defines the set of instances, x, for which there n or less instances, y, such that R(x, y)

≥nR	Minimum cardinality	$\{\mathbf{x} \in \Delta^{i} \mid \#(<\mathbf{x},\mathbf{y}>\inR^{i}) \geq n \}$
≤ n R	Maximum cardinality	$\{\mathbf{x} \in \Delta^{l} \mid \#(<\mathbf{x},\mathbf{y}> \in R^{l}) \leq n \}$

KMM ontology Lecture 3 / 4

OWL

• Datatypes Δ^{I}_{D} and Object types Δ^{I}

BN, CN	Non-empty sets BN ^I , CN ^I ⊆∆ ^I	
D	$D^{I} \subseteq \Delta_{D}^{I}$	
(B ⊔ C) ^ı	$\{x \in \Delta^i \mid x \in B^i \lor x \in C^i\}$	
(В п С) ^і	$\{x \in \Delta^i \mid x \in B^i \land x \in C^i\}$	
(∀R.C) ^ı	$\{\mathbf{x} \in \Delta^{I} \mid \forall \mathbf{y} \; (\langle \mathbf{x}, \mathbf{y} \rangle \in R^{I} \Rightarrow \mathbf{y} \in C^{I})\}$	
(3R.C) ⁱ	$\{\mathbf{x} \in \Delta^{I} \mid \exists \mathbf{y} < \mathbf{x}, \mathbf{y} > \in R^{I} \land \mathbf{y} \in C^{I}\}$	
(YU.D) ⁱ	$\{x \in \Delta^{I} \mid \forall y \; (< x, y > \in U^{I} \Rightarrow y \in D^{I})\}$	
'(D.UE)	$\{x \in \Delta^i \mid \exists y < x, y > \in U^i \land y \in D^i\}$	

Disjointness axioms

Assume C and D are asserted to be disjoint in Protégé - example of an axiom.
Q. Can anything be a subset of C and D?
Define a new class: TestClass ≡ C ⊓ D
Goal: C ⊓ D
L(a0) = {C ⊓ D}
L(a0) = {C, D} no clash
Disjointness means: ⊤ ⊑ ¬C ⊔ ¬D [equivalent to C ⊓ D ⊑ ⊥]
L(a0) = {C, D, ¬C ⊔ ¬D}
i. L(a0) = {C, D, ¬C} clash

KMM ontology Lecture 3 / 4

OWL-DL Cardinality

Cardinality

ii. L(a0) = {C, D, ¬D} clash

BN, CN	Non-empty sets BN', CN'⊆∆'	
(∀R.C) ^ı	$\{\mathbf{x} \in \Delta^{i} \mid \forall \mathbf{y} \; (<\mathbf{x}, \mathbf{y} > \in R^{i} \Rightarrow \mathbf{y} \in C^{i})\}$	
(3R.C) ^I	$\{x \in \triangle^{I} \mid \exists y < x, y > \in R^{I} \land y \in C^{I}\}$	
(≥ n R) ⁱ	$\{\mathbf{x} \in \Delta^{l} \mid \#(<\mathbf{x},\mathbf{y}>\inR^{l}) \geq n \}$	
(≤nR) ⁱ	$\{\mathbf{x} \in \Delta^{l} \mid \#(<\mathbf{x},\mathbf{y}>\inR^{l}) \le n \}$	

hasWheel^I = {<a0,a1> <a0,a2>} therefore: ≥0 hasWheel; ≥1 hasWheel; ≥2hasWheel; and ≤ 2 hasWheel; ≤3 hasWheel ...

OWL-DL Cardinality

- Bicycle $\equiv \ge 2$ hasWheel $\square \le 2$ hasWheel
 - □ ∀hasPart. ¬Engine
- Unicyles would have 1 wheel, tricycles 3 wheels, motorcycles would have 2 wheels and an Engine......
- hasWheel is needed, rather than hasPart, as OWL-DL cannot specify the type of the range to be Wheel
 - Define hasWheel a subProperty of hasPart
 - Range of hasWheel: Wheel
- An example of 'bias' being introduced because of the expressivity of the representation

KMM ontology Lecture 3 / 4

Domain and range specifications

domain(R, C) :: $\geq 1 R \sqsubseteq C$

Consider:

- 1) **HasChild.Male** : anything with a male child
- 2) Person | 3hasChild.Male :person with a male child:

The Person intersection in 2) is implicit in 1) if the domain of hasChild is defined as Person

range(R, C) :: $\top \sqsubseteq \forall R.C$

KMM ontology Lecture 3 / 4

Resource Description Framework (RDF)

- RDF is a W3C standard, pre-dating OWL, for web semantics
- Identifies 'things' through URIs, and describes them in terms of simple properties and property values
- The triple is the basic unit: <subject predicate object>
 <http://www.example.org/index.html
 http://purl.org/dc/elements/1.1/creator
 http://www.example.org/staffid/85740>
- Subjects and objects are viewed as nodes in a graph, where predicates label the edges

ns1:index.html dc:date "03/03/2004"

- In RDF, predicates represent relationships between resources
 - But RDF provides no way to define these predicates, or state other ontological properties
 - RDF Schema addresses some of these problems

- RDFS allows subclasses and the domain and range of properties to be defined (http://www.w3.org/TR/rdf-schema/)
 - e.g. to state that creator has domain Document and range Person, two triples are needed:

<dc:creator rdfs:domain ns:Document>
<dc:creator rdfs:range ns:Person>

rdf:Property	the class of properties, an instance of rdfs:Class
rdfs:Resource	the class of everything
rdfs:Literal	the class of literal values e.g. string, integer
rdfs:Class	the class of RDF classes

rdf:typethe instance-of relationrdfs:domaindomain definition, an instance of rdf:Propertyrdfs:rangerange definition, an instance of rdf:Propertyrdfs:subClassOfsubclass relationrdfs:subPropertyOfsubproperty relation

There is no effective reasoning algorithm for RDFS
 _____hence, OWL

OWL Abstract Syntax

The ALC-style syntax is not suitable for the WWW

OWL needs to conform to the RDF/XML syntax

OWL/ALC DL Syntax		OWL Abstract Syntax
() ר)	Full Negation	< complementOf C >
(C 🏼 D)	Union	< unionOf C D >
(C 🛛 D)	Intersection	< intersectionOf C D >
(¥R.C)	Value restriction	<pre>< Restriction < onProperty R > < allValuesFrom C >></pre>
(3 R.C)	Full existential quantification	< Restriction < onProperty R > < someValuesFrom C >>
(C Π D) = ⊥	Disjoint concepts	< disjoint C D >
C⊑D	Subclass of /subsumes	< C <subclassof d="">></subclassof>
C ≡D	Equivalent	<c <equivalentclass="" d="">></c>

KMM ontology Lecture 3 / 4

OWL in RDF/XML Syntax

Class definitions C ⊑ D and Property restrictions ∀R.C in RDF/XML syntax: DieselEngine is a subclass of Engine: DieselEngine ⊑ Engine <owl:Class rdf:ID ="DieselEngine"> <rdfs:subclass0f rdf:resource="&base:Engine"/>

</owl:Class>

CarPart is a subclass of the parts of the Car:

rdf:ID introduces new terms (compare with rdf:about to refer to terms) &base; is a namespace (assumed to be defined)

KMM ontology Lecture 3 / 4

OWL in RDF/XML Syntax

CarEngine is equivalent to the intersection of Engine and ∀partOf.Car : CarEngine ≡ Engine ⊓ ∀partOf.Car

<owl:Class rdf:ID="CarEngine">

<owl:equivalentClass>

<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Engine"/>

<owl:Restriction>

<owl:onProperty rdf:resource="&base;partOf"/> <owl:allValuesFrom rdf:resource="#Car"/>

</owl:Restriction>

</owl:intersectionOf>

</owl:Class>

</owl:equivalentClass> </owl:Class>

Protégé reads and writes this syntax!

Use HP's Jena toolkit in Java applications that need to read/write/ manipulate RDF/S or OWL.

KMM ontology Lecture 3 / 4

OWL

OWL:

- Is a web-compatible ontology language
- Syntax based on RDF/XML
- Semantics compatible with RDF and RDFS
- OWL-Lite and OWL-DL have a formal interpretation based on DLs
- Extensive documentation at http://www.w3c.org
- Editing Tools
 - Protégé 4

