Description Logic and OWL

Description Logic

- An important element of the Semantic Web
- Has a well-defined semantics
" A Concept is a non-empty set
" Enables subsumption (subClassOf relations) to be computed
- Tractable inference algorithms
- OWL (Web Ontology Language)
- An ontology language for the Semantic Web W3C standard
- Based on Description Logic
- RDF/XML syntax

OWL 1.1 and 2

- Extend OWL
- Modify syntax

Description Logic

- Description Logics allow formal concept definitions that can be reasoned about to be expressed
- Example Concept definitions:

Woman ミPerson 7 Female
Man \equiv Person $\boldsymbol{\Pi} \rightarrow$ Woman

- Not a single logic, but a family of KR logics originating from KL-One e.g. AL, ALC,...,SHIQ,...SHIN(D)
- Subsets of first-order logic
- Well-defined model theory
- Known computational complexity

- FACT inference algorithm

- Prove subsumption

- Prove disjointness

Further reading (not required reading):
Horrocks, lan. (1997) Optimising tableaux decision procedures for Description Logics, and many papers on-line
Baader, F., Calvanese, D., McGuiness, D., Nardi, D., and Patel-Schneider, P. Description Logic Handbook (Chapter 2)

Description Logic Terminology

Description Logics separate assertions and concept definitions

- A Box: Assertions
- E.g. hasChild(john, mary)
- This is the knowledge base
(we will not look at this aspect)
- T Box: Terminology
- The definitions of concepts in the ontology
- Example axioms for definitions
" $C \subseteq D$ [C is a subclass of D, D subsumes C]
» $\mathrm{C} \equiv \mathrm{D} \quad[\mathrm{C}$ is defined by the expression D$]$

Description Logic Terminology
Important terminology:

- Concept: class, category or type (as introduced earlier)
- Role: binary relation
- Attributes are functional roles
- Subsumption:
- D subsumes C if C is a subclass of D
- i.e. All Cs are Ds
- Unfoldable terminologies:
- The defined concept does not occur in the defining expression
- $C \equiv D$ where C does not occur in the expression D
- Language families
- AL: Attributive Language
- ALC adds full negation to AL
KMM ontology Lecture 3/4

Description Logic

Language elements for terminological axioms:

$C \equiv D$ 'is defined by' C is equivalent to D
$C \subseteq D$ 'is subsumed by' C is subsumed by/is a subclass of D
Terminological axioms make assertions about concept expressions.
Grammar for terminological axioms:

$$
C \equiv D \mid C \subseteq D
$$

The cases of most interest are where $\mathbf{C N}$ is given a
'necessary and sufficient definition': CN = D
And where CN is given a
'necessary definition': CN ㄷ D

Description Logic

Language elements for concept expressions:
\perp

KMM ontology Lecture 3 / 4

Description Logic ALC

CN, DN	Atomic concept	Sets CN, DN
\perp	Bottom	Empty set
T	Universal concept, Top	Universal set
$\neg \mathrm{C}$	Full Negation	Complement of C
C ப D	Union	Union of C and D
CПD	Intersection	Intersection of C and D
$\forall R . C$	Value restriction	The set $\{x \mid \forall y \mathrm{R}(\mathrm{x}, \mathrm{y}) \Rightarrow \mathrm{y} \in \mathrm{C}\}$
ER.C	Full existential restriction	The set $\{x \mid \exists y \mathrm{R}(\mathrm{x}, \mathrm{y}) \wedge \mathrm{y} \in \mathrm{C}\}$

Terminological axioms: Inclusions and equalities
Concepts: $\mathrm{C} \subseteq \mathrm{D}$ and $\mathrm{C} \equiv \mathrm{D}$
Roles: $\quad R \sqsubseteq S$ and $R \equiv S$

Description Logic ALC

Example concept expressions：
Parent \equiv＂Persons who have（amongst other things）some children＂ Person Π ヨhasChild．\top

ParentOfBoys इ＂Persons who have some children，and only have children that are male＂
Person $п$（ ヨhasChild．T ）$п$（ \forall hasChild．Male）
ScottishParent \equiv＂Persons who only have children that drink （amongst other things）some IrnBru＂
Person Π（ \forall hasChild．（ \exists drink．IrnBru））
Each term（atomic or compound）defines a set as given by the right－ hand column in the table
－The model theory makes this more formal
KMM ontology Lecture 3／4

Value and Exists Restrictions

\｛a，b，c，d，e，f\} are instances; Plant and Animal are classes

Plant $п$ Animal 드 \perp （disjointness）

T 드 Plant u Animal （partition）

Description Logic ALC

ALC Model Theory：（wff）${ }^{\prime}=\left\{\ldots\right.$ ．．．a set．．．\}; R^{\prime} is a set $=\{<d, r>, \ldots\}$

CN＇，DN	Atomic concepts	Non－empty sets CN＇，DN ${ }^{\prime} \subseteq \Delta^{\prime}$
\perp^{\prime}	Bottom	ϕ
T^{\prime}	Universal concept，	Δ^{\prime}
$(\neg C)^{\prime}$	Full Negation	$\Delta^{\prime} \backslash C^{\prime}$
$(C \sqcup D)^{\prime}$	Union	$C^{\prime} \cup D^{\prime}$
$(C \cap D)^{\prime}$	Intersection	$C^{\prime} \cap D^{\prime}$
$(\forall R . C)^{\prime}$	Value restriction	$\left\{x \in \Delta^{\prime} \mid \forall y<x, y>\in R^{\prime} \Rightarrow y \in C^{\prime}\right\}$
$(\exists R . C)^{\prime}$	Full existential restriction	$\left\{x \in \Delta^{\prime} \mid \exists y<x, y>\in R^{\prime} \wedge y \in C^{\prime}\right\}$

Terminological axioms：Inclusions and equalities
Concepts：$C \subset D$ iff $C^{\prime} \subset D^{\prime}$
Concepts：$C \subseteq D$ iff $C^{\prime} \subseteq D^{\prime}$
$C \equiv D$ iff $C^{\prime}=D^{\prime}$

Value and Exists Restrictions

$\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}\}$ are instances；Plant and Animal are classes

ヨeats．Animal $=\{\mathrm{c}, \mathrm{d}, \mathrm{e}\}$
Veats．Animal $=\{a, b, c, e, f\}$
ヨeats．Animal $п \forall$ eats．Animal $=\{c, e\}$
KMM ontology Lecture 3 ／ 4

Description Logic ALC

Model Theory

Δ^{\prime} universal domain of individuals，let
$\Delta^{1}=\{a, b, c, d, e, f\}$
eats＇set of pairs for the relation eats，let
eats ${ }^{\prime}=\{\langle d, a\rangle,\langle d, e\rangle,\langle e, d\rangle,\langle e, f\rangle,\langle c, f\rangle\}$
For all concepts C ：
i）$C^{\prime} \subseteq \Delta^{\prime}$
ii） $\mathrm{C}^{1} \neq \phi$
Let Animall $=\{\mathrm{d}, \mathrm{e}, \mathrm{f}\}$
$\therefore(\neg \text { Animal })^{1}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
MeatEater $\equiv \forall$ eats．Animal $=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{e}, \mathrm{f}\}$
Vegetarian $\equiv \forall$ eats．\neg Animal $=\{\mathrm{a}, \mathrm{b}, \mathrm{f}\}$
Omnivore \equiv Jeats．Animal $=\{\mathrm{c}, \mathrm{d}, \mathrm{e}\}$
Inference：
So MeatEater subsumes Vegetarian
and Vegetarian is disjoint from Omnivore
in this model，by these definitions

- BUT the problem is to prove properties
for ALL models

KMM ontology Lecture 3 ／ 4
A응
13

ALC：Value Restriction

Value restriction：$\forall R . C$
R is a binary relation，e．g．eats (x, y)
C is a concept expression，e．g．Animal
Consider：$\quad \forall$ eats．Animal＂things that eat only Animal＂
$\forall y$ if eats (x, y) then $y \in$ Animal

In the formal model theory，where the domain is Δ^{\prime} ，eats is represented by a set of tuples，e．g．
eats ${ }^{\prime}=\{\langle d, a\rangle,\langle d, e\rangle,\langle e, d\rangle,\langle e, f\rangle,\langle c, f\rangle\}$ meaning eats（d，a）eats（d，e）．．．
Animal ${ }^{1}=\{\mathrm{d}, \mathrm{e}, \mathrm{f}\}$
The set corresponding to \forall eats．Animal is
$\left\{x \in \Delta^{\prime} \mid \forall y<x, y>\in\right.$ eats $^{\prime} \Rightarrow y \in$ Animal＇$\}=\{a, b, c, e, f\}$
In general，$\forall R . C$ is interpreted as：
$\left\{x \in \Delta^{\prime} \mid \forall y<x, y>\in R^{\prime} \Rightarrow y \in C^{\prime}\right\}$

\｛a，b，c，d，e，f\} are instances; Plant and Animal are classes

Omnivore $=\{\mathrm{c}, \mathrm{d}, \mathrm{e}\}$

ALC：Existential Restriction

Existential restriction：ヨR．C
R is a binary relation，e．g．eats (x, y)
C is a concept expression，e．g．Animal
Consider：ヨeats．Animal＂things that eat some Animal＂
defines the set x \qquad \uparrow

In the formal model theory，where the domain is Δ^{\prime} ，eats is represented by a set of tuples，e．g．
eats ${ }^{1}=\{<d, a>,<d, e>,<e, d>,<e, f>,<c, f>\}$ meaning eats（d，a）eats（d，e）．．．
Animal $=\{b, e\}$
The set corresponding to ヨeats．Animal is：
$\left\{x \in \Delta^{\prime} \mid \exists y<x, y>\in e^{\prime}\right)^{\prime} \wedge y \in$ Animal＇$\}=\{c, d, e\}$
In general，$\exists R . C$ is interpreted as：
$\left\{x \in \Delta^{\prime} \mid \exists y<x, y>\in R^{\prime} \wedge y \in C^{\prime}\right\}$

- Inference can expressed in terms of the model
- Satisfiability of C: C^{1} is non-empty
- Subsumption $C \subseteq D$ iff $C^{\prime} \subseteq D^{\prime} \quad$ ("C is subsumed by $\left.D^{\prime \prime}\right)$
- Equivalence $C \equiv D$ iff $C^{\prime}=D^{\prime}$
- Disjointness (C п D) ᄃ \perp iff $C^{\prime} \cap D^{I=\phi}$
- Tractable/terminating inference algorithms exist

FACT Algorithm

- The FACT tableaux method
- A tractable, extendable procedure
» extendable to more expressive DLs than ALC e.g. with cardinality constraints and role expressions
- Assume an unfoldable terminology
" exclude: Human $\equiv \exists$ hasParent. Human
- Assume all definitions are necessary and sufficient \equiv
- Proof is by unsatisfiability
» To show C and D are disjoint or in a subsumption relation, a goal expression G is formed, and
» the aim is to reject G
- 4 steps:
- Steps 1-3 transform the goal into negation normal form
- Step 4 constructs a tableaux (a labelled tree)

Inference has 2 equivalent notions - so implementing one lets us prove all 4 properties

- Reduction to subsumption ㄷ :
- Unsatisfiability of C: Cㄷ \perp
- Equivalence $C \equiv D$ iff Cㄷ and DC
- Disjointness (CпD) ᄃ \perp
- Reduction to unsatisfability $\mathrm{C}^{\prime}=\phi$:
- Subsumption C ㄷ D iff ($C \quad \square \neg D$) is unsatisfiable
- Equivalence $C \equiv D$ iff $(C \cap \neg D)$ and $(D \sqcap \neg C)$ are unsatisfiable
- Disjointness (C п D) is unsatisfiable

FACT Algorithm

1. Given two expressions C and D, replace all defined terms by their definition, e.g. if $C \equiv E \cap F$ then replace C by $E \sqcap F$

- Continue until all defined terms are replaced (E and F may be defined)
- Do this for C to get C^{\prime} and D to get D^{\prime}

2. Construct the goal G

- To show C and D are disjoint, G is $C^{\prime} \Pi D^{\prime}$
- To show $C \subseteq D, G$ is $C^{\prime} \Pi \neg D^{\prime}$

3. Convert \mathbf{G} to negation normal form using these equivalences: $\neg \forall R . A=\exists R . \neg A$
$\neg \exists \mathrm{R} . \mathrm{A}=\forall \mathrm{R}$. $\neg \mathrm{A}$
$\neg(A \cap B)=\neg A \sqcup \neg B$
$\neg(A \amalg B)=\neg A \sqcap \neg B$
As a result, the 'not' operator is pushed to the inner-most term and only atomic concept expressions are negated

FACT Algorithm

FACT Algorithm

4. Tableaux method - FACT algorithm (lan Horrocks) for ALC

- The tableaux is represented by a tree
- The tree is constructed from a root node, $\mathbf{a 0}$, whose label is the goal G : $L(a 0)=\{G\}$
- Nodes represent individuals (a 0 and a 1 in the figure below)
- Edges represent roles (relationships)
- Edges are labelled with role names
- If the edge $<x, y>$ is labelled R then " y is an R successor of x "
- $L(x)$ is the label of node x

The individual x must be in the extension of every concept in $L(x)$

- The tree contains a clash if $\left\{\mathrm{C}, _\mathrm{C}\right\} \subseteq \mathrm{L}(\mathrm{x})$

FACT Algorithm

Tableaux method - summary of rules

Π-rule: $(C \Pi D) \in L(x)$ then add C and D to $L(x)$

u-rule: $(C u D) \in L(x)$ then add C or D to $L(x)$
\exists-rule: $\exists \mathrm{R} . \mathrm{C} \in \mathrm{L}(\mathrm{x})$ then add $\mathrm{L}(\langle\mathrm{x}, \mathrm{y}>)=\mathrm{R}$ (if it does not yet exist) and $C \in L(y)$
4. $\quad \forall$-rule: $\forall R . C \in L(x)$ then IF there is some y s.t. $L(\langle x, y>)=R$ and $L(y)$ does not contain C, add C to L (y)
A)Are Vegetarian and Omnivore
disjoint?

Tableaux method - rules that construct the tree

1. $\quad \Pi$-rule: $(C \Pi D) \in L(x)$ then add C and D to $L(x)$ (a) $\{C \cap D\}=>$ (a0 $\{C, D\}$
2. u-rule: $(C u D) \in L(x)$ then add C or D to $L(x)$

$$
\text { (a0) }\{C \cup D\}=>\text { @ }\{C\} \text { OR }\{D\}
$$

3. $\quad \exists$-rule: $\exists R . C \in L(x)$ then add $L(<x, y>)=R$ (if it does not yet exist) and $C \in L(y)$
${ }_{R}^{\text {@a }}\{\exists \mathrm{R} . \mathrm{C}\}$ add an edge R to a new node $\{\mathrm{C}\}$ (unless both exist already)
(ai)
4. $\quad \forall$-rule: $\forall R . C \in L(x)$ then IF there is some y s.t. $L(\langle x, y\rangle)=R$ and $L(y)$ does not contain C, add C to L(y)
(a) $\{\forall R . C\}$ and if there is an edge labelled R

R
(a) $\{C\}$
KMM ontology Lecture 3/4

Description Logic

Are Vegetarian and Omnivore disjoint?

Vegetarian $п$ Omnivore ㄷ \perp
Replace named classes by their definition:
Vegetarian $\equiv \forall$ eats. \neg Animal
Omnivore \equiv Jeats.Animal
Construct goal: \forall eats. \neg Animal \cap ヨeats.Animal
\{Veats. \neg Animal \cap Jeats.Animal\} [already in NNF]
(a) $\{\forall$ eats. \neg Animal, Jeats.Animal\} \quad [a0:by n elimination split term in L(a0),
by \exists elimination add edge, and add
Animal to $\mathrm{L}(\mathrm{a} 1), \mathrm{L}(\mathrm{a} 1)=\{$ Animal $\}$]
[a0:by \forall elimination add \neg Animal to $L(a 1)$]
Proven: tableaux shows a clash in $\mathrm{L}(\mathrm{a} 1)$

Are Vegetarian and MeatEater disjoint？
Vegetarian $п$ MeatEater 드 \perp
Replace named classes by their definition：
Vegetarian $\equiv \forall$ eats．\neg Animal
MeatEater $\equiv \forall$ eats．Animal
Construct goal：\forall eats．\neg Animal \cap Veats．Animal
（a）\｛Veats．\neg Animal $\cap \forall$ eats．Animal\} [already in NNF]
\｛ \forall eats．\neg Animal，\forall Veats．Animal\} $\quad[a 0:$ by 7 elimination split term in $L(a 0)$ ］
No more rules apply，therefore disjointness cannot be proven．
Note，\forall elimination cannot be applied unless an edge labelled eats already exists．
KMM ontology Lecture 3／4

Description Logic

Does Vegetarian subsume Omnivore？
Omnivore 〔 Vegetarian
Omnivore $\square 7$ Vegetarian 드 \perp
Replace named classes by their definition：
Omnivore \equiv Jeats．Animal
Vegetarian $\equiv \forall$ eats．\neg Animal
Construct goal：ヨeats．Animal $\cap \neg \forall$ eats．\neg Animal
\｛ヨeats．Animal n ヨeats．Animal\} [after conversion to NNF]

Description Logic

Does MeatEater subsume Vegetarian？

Vegetarian ㄷ MeatEater
Vegetarian $n\urcorner$ MeatEater $\subseteq \perp$
Replace named classes by their definition：
Vegetarian $\equiv \forall$ eats．\neg Animal
MeatEater $\equiv \forall$ eats．Animal
Construct goal：\forall eats．\neg Animal $\Pi \neg \forall$ eats．Animal
\｛ \forall eats．\neg Animal $п$ ヨeats．\neg Animal\} [after conversion to NNF]
［a0：by n elimination split term in $\mathrm{L}(\mathrm{a} 0)$ ，
by \exists elimination add edge，and add \neg Animal to $L(a 1), L(a 1)=\{\neg$ Animal $\}]$
［a0：\forall elimination would add \urcorner Animal to $L(a 1)$ ］
no more rules apply，subsumption is not proven
KMM ontology Lecture 3／4

Description Logic

Show C and D are disjoint：
$\mathrm{C} \equiv \forall \mathrm{r} . \neg \mathrm{A} \cap \forall \mathrm{r} . \exists \mathrm{s} . \neg \mathrm{B}$
$\mathrm{D} \equiv \exists \mathrm{r}$ ．（ $(\forall \mathrm{s} . \mathrm{B}) \cup \mathrm{A})$

$\forall \mathrm{\forall r} \boldsymbol{\forall} . \exists \mathrm{s} . \neg \mathrm{B}) \Pi(\exists \mathrm{r} .((\forall \mathrm{s} . \mathrm{B}) \sqcup \mathrm{A}))\}$
$\{\forall r . \neg A \square \forall r . \exists \mathrm{s} . \neg \mathrm{B}, \exists \mathrm{r} .((\forall \mathrm{s} . \mathrm{B}) \sqcup \mathrm{A})\}$
r $\{\forall \mathrm{r} . \neg \mathrm{A}, \forall \mathrm{V} . \exists \mathrm{s} . \neg \mathrm{B}$, 目．（（ $\forall \mathrm{s} . \mathrm{B}) \cup \mathrm{A})\}$

（a1）$\{\neg \mathrm{A}, \exists \mathrm{s} . \neg \mathrm{B},((\forall \mathrm{s} . \mathrm{B}) \square \mathrm{A})\}$ $\{\neg A, \exists \mathrm{~B} . \neg \mathrm{B}, \forall \mathrm{s} . \mathrm{B}\}$ OR $\{\neg \mathrm{A}, \exists \mathrm{s} . \neg \mathrm{B}, \mathrm{A}\}$
［a1：apply u elim．，then by \exists elim． add an edge labelled s to a 2 ， add B to L（a2）．Clash immediately closes tree for 2nd disjunct．

Description Logic

Defining concepts：

－Value restrictions are often combined with appropriate
classes using intersection：
Vegan \equiv Person Π Veats．Plan
Vegetarian \equiv Person Π Veats．（Plant ப Dairy）
Omnivore \equiv Person Π ヨeats．Animal Π ヨeats．（Plant \square Dairy）
－Value restrictions may need an existential expression
＂If we want to prevent people who don＇t eat at all being classified as Vegan：
Vegan \equiv Person Π Veats．Plant Π Jeats．Plant
－Classes are not disjoint by default
» Explicit disjointness assertions are needed
－Forall does not imply some
 contradictory unless Jeats．T

Description Logic

More＇Syntactic＇Proofs
 ［Previously，the tableaux was shown to have a clash］
－Apply the $\neg \forall$ equivalence rule：
\forall eats．\neg Animal \square ヨeats．Animal $=$
\neg ヨeats．Animal Π ヨeats．Animal＝
ᄀ P П P for $\mathrm{P}=$ ヨeats．Animal
There is no intersection between $\neg P$ and P for any concept expression P ，and so the answer is no
－The tableaux construction rules can be modified to detect such contradictions

Description Logic

Tableaux method can be extended：

Transitive roles，e．g．part－of is a transitive relation
Number restrictions，e．g．
ParentsWithThreeOrMoreChilden

General Terminologies

－$C \underline{ㄷ}_{T} D$ iff $(C \Pi \neg D)^{\prime}=\phi$ for all models I of T
－Add $\neg C \cup D$ to all $L(x)$ as a meta－constraint \mathcal{M}
－Cope with non－terminating terminologies by a blocking rule
－If the label occurs earlier in the tree then stop
－Human ㄷ ヨhasParent．Human
－node（a1）is blocked showing satisifiability
（ad）$\{$ Human, $\mathcal{M}\} \mathcal{M}=\neg$ Human $ப$ IhasParent．Human
\｛Human，\exists hasParent．Human， \mathcal{M} \}
hasPareñ $\{$ Human， $\mathcal{M}\}$
\｛Human，ヨhasParent．Human， $\mathcal{M}\}$
BLOCKED－do not continue to extend the tree

Description Logic

Relationship to first－order logic（advanced topic）

$$
\begin{array}{ll}
\phi_{\forall R . C}(x)=\forall y R(x, y) \Rightarrow \phi_{C}(y) & {[\text { for } C N: \forall y R(x, y) \Rightarrow C N(y)]} \\
\phi_{\exists R . C}(x)=\exists y R(x, y) \wedge \phi_{C}(y) & {[f o r C N: \exists y R(x, y) \wedge C N(y)]}
\end{array}
$$

Modal Logics
－Necessity／All time／Knows
$[\square \mathrm{P}]_{\mathrm{v}}$ iff $\left.\forall \mathrm{wr} \mathrm{r}, \mathrm{w}\right) \Rightarrow[\mathrm{P}]_{\mathrm{w}}$
\diamond Possibility／Some time／Believes
$[\diamond P]_{v}$ iff $\exists \mathrm{wr}(\mathrm{v}, \mathrm{w}) \wedge[\mathrm{P}]_{\mathrm{w}}$

DL and（multi）modal K have the same duality between operators

$$
\begin{array}{ll}
\neg \forall R . C=\exists R . \neg C & \neg \square_{R} P=\diamond_{R} \neg P \\
\neg \exists R . C=\forall R . \neg C & \neg \diamond_{R} P=\square_{R} \neg P
\end{array}
$$

Description Logics and their properties

Web Ontology Language: OWL

- ALC
- Sound and complete subsumption testing
- ALCN
- ALC + number restriction $\geq \mathrm{nR}$
- \quad ALC $_{\text {R }}$
- ALC + transitively closed roles
- SHIQ
- SH family: ALC + transitive roles and role hierarchy
- SHOQ(D)
- Adds datatypes (D) and enumerated types to SHIQ
- SHIF(D)
- Adds datatypes transitive roles and role hierarchy, plus functional attributes to SHIQ (OWL-Lite)
- SHOIN(D)
- Adds nominals to class descriptions (oneOf \{a,b,c\}) and arbitrary cardinality constraints (OWL-DL)
- Web Ontology Language (OWL) is W3C Recommendation for an ontology language for the web
- Has an XML syntax
- OWL is layered on RDF and RDFS (other W3C standards)
- Conforms to the RDF/RDFS semantics
- OWL has 3 versions:
" OWL-Lite - the simpler OWL DL
» OWL-DL - more expressive DL
" OWL-Full - not confined to DL, closer to FOL
- OWL DLs extend ALC
" Allow instances to be represented (A Box)
» Provides datatypes
» Provides number restrictions
OWL 1.1 and 2 extend OWL DL

OWL Object Properties
OWL makes a distinction between Object types and Datatypes
Object types and Object properties are the same as in ALC

CN, DN	Atomic concepts	Non-empty sets CN', DN' $\subseteq \Delta^{\prime}$	
\perp^{\prime}	owl:Nothing	¢	
T^{1}	owl:Thing	Δ^{\prime}	
$(\neg \mathrm{C}){ }^{1}$	Full Negation	$\Delta^{\prime} \backslash \mathbf{C l}^{\prime}$	
$(\mathrm{C} \\| \mathrm{D})^{1}$	Union	$C^{\prime} \cup D^{\prime}$	
(C ח D ${ }^{1}$	Intersection	$\mathrm{C}^{\prime} \cap \mathrm{D}^{\prime}$	
(\forall R.C) ${ }^{1}$	Value restriction	$\left\{x \in \Delta^{\prime} \mid \forall y<x, y>\in R^{\prime} \Rightarrow y \in C^{\prime}\right\}$	
($\mathrm{R}^{\text {C.C) }}{ }^{1}$	Full existential quantification	$\left\{x \in \Delta^{\prime} \mid \exists y<x, y>\in R^{1} \wedge x \in C^{\prime}\right\}$	

Terminological axioms: Inclusions and equalities
Concepts: $C \subseteq D$ iff $C^{\prime} \subseteq D^{\prime}$
$C \equiv D$ iff $C^{\prime}=D$

OWL Datatypes

- Datatypes $\Delta^{\prime}{ }_{D}$ are distinct from Object types Δ^{\prime}
- A datatype relation U, e.g. age, relates an object type, e.g. Person to an integer
» ヨage.Integer [the set of things that have some Integer as age]
- Data types correspond to XML Schema types
- OWL also provides hasValue: U:v to represent specific datatype values
" age:29 [the set of things age 29]

D	Data Range	$D^{\prime} \subseteq \Delta_{D}^{\prime}$
($\forall U . D)^{\prime}$	Value restriction	$\left\{x \in \Delta^{\prime} \mid \forall y<x, y>\in U^{\prime} \Rightarrow y \in D^{\prime}\right\}$
$(\exists U . D)^{\prime}$	Full existential quantification	$\left\{x \in \Delta^{\prime} \mid \exists y<x, y>\in U^{\prime} \wedge y \in D^{\prime}\right\}$

- Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen. From SHIQ and RDF to OWL: The making of a web ontology language. J. of Web Semantics, 1(1):7-26, 2003.

OWL Number Restrictions

- OWL adds (unqualifying) number restrictions to ALC $\geq n R$
- Defines the set of instances, x, for which there n or more instances, y, such that $R(x, y)$
- BusyParent $\equiv \geq 3$ hasChild
$\leq n R$
- Defines the set of instances, x, for which there n or less instances, \mathbf{y}, such that $\mathrm{R}(\mathrm{x}, \mathrm{y})$

$\geq \mathrm{n} R$	Minimum cardinality	$\left\{x \in \Delta^{\prime} \mid \#\left(<x, y>\in R^{\prime}\right) \geq n\right\}$
$\leq \mathrm{nR}$	Maximum cardinality	$\left\{x \in \Delta^{\prime} \mid \#\left(<x, y>\in R^{\prime}\right) \leq n\right\}$

OWL

- Datatypes $\Delta^{\prime}{ }_{\mathrm{D}}$ and Object types Δ^{\prime}

BN, CN	Non-empty sets $B N^{\prime}, C N^{\prime} \subseteq \Delta^{\prime}$
D	$D^{\prime} \subseteq \Delta_{D}^{\prime}$
$(B \cup C)^{\prime}$	$\left\{x \in \Delta^{\prime} \mid x \in B^{\prime} \vee x \in C^{\prime}\right\}$
$(B \cap C)^{\prime}$	$\left\{x \in \Delta^{\prime} \mid x \in B^{\prime} \wedge x \in C^{\prime}\right\}$
$(\forall R . C)^{\prime}$	$\left\{x \in \Delta^{\prime} \mid \forall y\left(<x, y>\in R^{\prime} \Rightarrow y \in C^{\prime}\right)\right\}$
$(\exists R . C)^{\prime}$	$\left\{x \in \Delta^{\prime} \mid \exists y\left\langle x, y>\in R^{\prime} \wedge y \in C^{\prime}\right\}\right.$
$(\forall U . D)^{\prime}$	$\left\{x \in \Delta^{\prime} \mid \forall y\left(\left\langle x, y>\in U^{\prime} \Rightarrow y \in D^{\prime}\right)\right\}\right.$
$(\exists U . D)^{\prime}$	$\left\{x \in \Delta^{\prime} \mid \exists y\left\langle x, y>\in U^{\prime} \wedge y \in D^{\prime}\right\}\right.$

KMM ontology Lecture 3/4

Disjointness axioms

Assume C and D are asserted to be disjoint in Protégé example of an axiom.
Q. Can anything be a subset of C and D ?

Define a new class: TestClass $\equiv \mathbf{C}$ п D
Goal: C п D
$L(a 0)=\{C \cap D\}$
$L(a 0)=\{C, D\}$ no clash

$\mathrm{L}(\mathrm{aO})=\{\mathrm{C}, \mathrm{D}, \mathrm{DC} \mathrm{\square} \mathrm{\square D}\}$
i. $L(a 0)=\{C, D, \neg C\}$ clash
ii. $L(a 0)=\{C, D, \neg D\}$ clash

OWL-DL Cardinality
Cardinality

BN, CN	Non-empty sets $B N^{\prime}, C N^{\prime} \subseteq \Delta^{\prime}$
$(\forall R . C)^{\prime}$	$\left\{x \in \Delta^{\prime} \mid \forall y\left(<x, y>\in R^{\prime} \Rightarrow y \in C^{\prime}\right)\right\}$
$(\exists R . C)^{\prime}$	$\left\{x \in \Delta^{\prime} \mid \exists y<x, y>\in R^{\prime} \wedge y \in C^{\prime}\right\}$
$(\geq n R)^{\prime}$	$\left\{x \in \Delta^{\prime} \mid \#\left(\left\langle x, y>\in R^{\prime}\right) \geq n\right\}\right.$
$(\leq n R)^{\prime}$	$\left\{x \in \Delta^{\prime} \mid \#\left(<x, y>\in R^{\prime}\right) \leq n\right\}$

hasWheel' $=\{<a 0, a 1><a 0, a 2>\}$ therefore: ≥ 0 hasWheel; ≥ 1 hasWheel; ≥ 2 hasWheel; and ≤ 2 hasWheel; ≤ 3 hasWheel ..

OWL-DL Cardinality

Bicycle $\equiv \geq 2$ hasWheel $n \leq 2$ hasWheel
Π VhasPart. \urcorner Engine

- Unicyles would have 1 wheel, tricycles 3 wheels, motorcycles would have 2 wheels and an Engine......
- hasWheel is needed, rather than hasPart, as OWL-DL cannot specify the type of the range to be Wheel
- Define hasWheel a subProperty of hasPart
- Range of hasWheel: Wheel
- An example of 'bias' being introduced because of the expressivity of the representation
KMM ontology Lecture 3/4

Resource Description Framework (RDF)

- RDF is a W3C standard, pre-dating OWL, for web semantics
- Identifies 'things' through URIs, and describes them in terms of simple properties and property vaiues
- The triple is the basic unit: <subject predicate object>
<http://www.example.org/index.html
http://purl.org/dc/elements/1.1/creator
http://www.example.org/staffid/85740>
- Subjects and objects are viewed as nodes in a graph, where predicates label the edges

dc:date "03/03/2004
- In RDF, predicates represent relationships between resources But RDF provides no way to define these predicates, or state othe ontological properties
- RDF Schema addresses some of these problems

OWL Domain and Range
 Axioms

Domain and range specifications

domain(R, C) :: $\geq 1 \mathrm{R} \subseteq \mathrm{C}$

Consider:

1) ヨhasChild.Male :anything with a male child
2) Person Π ヨhasChild.Male :person with a male child:

The Person intersection in 2) is implicit in 1) if the domain of hasChild is defined as Person

```
range(R,C):: T \subseteq \forallR.C
```


RDF and RDF Schema (RDFS)

- RDFS allows subclasses and the domain and range of properties to be defined (http://www.w3.org/TR/rdf-schema/)
e.g. to state that creator has domain Document and range Person, two triples are needed:
<dc:creator rdfs:domain ns:Document>
<dc:creator rdfs:range ns:Person>
rdf:Property
rdfs:Resource
rdfs:Resource
rdfs:Class
rdf:type
rdfs:domain
rdfs:range
rdfs: subClassOf rdfs: subclassOf
rdfs:subPropertyof $\quad \begin{gathered}\text { subclass relation } \\ \text { subproperty relation }\end{gathered}$
- There is no effective reasoning algorithm for RDFS - hence, OWL
the class of properties, an instance of rdfs:Class
the class of everything
the class of literal values e.g. string, integer
the class of RDF classes
the instance-of relation
domain definition, an instance of rdf: Property
range definition, an instance of rdf: Property

OWL Abstract Syntax

The ALC-style syntax is not suitable for the WWW

- OWL needs to conform to the RDF/XML syntax

OWL in RDF/XML Syntax

CarEngine is equivalent to the intersection of Engine and $\forall p a r t O f . C a r ~: ~$
CarEngine \equiv Engine $п \forall$ partOf.Car
<owl:Class rdf:ID="CarEngine">
<owl:equivalentClass
owl:Class
<owl:intersectionOf rdf:parseType="Collection"> <owl:Class rdf:about="\#Engine"/>
owl:Restriction
<owl:onProperty rdf:resource="\&base;partOf"/>
<owl:allValuesFrom rdf:resource="\#Car"/>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>
</owl:equivalentClass>
</owl:Class>
Protégé reads and writes this syntax!
Use HP's Jena toolkit in Java applications that need to read/write/ manipulate RDF/S or OWL.

KMM ontology Lecture 3 / 4

Class definitions C ㄷ D and Property restrictions $\forall R . C$ in RDF/XML syntax:
DieselEngine is a subclass of Engine: DieselEngine 드 Engine
<owl:Class rdf:ID ="DieselEngine">
<rdfs:subClassof rdf:resource="\&base;Engine"/>
</owl:Class>
CarPart is a subclass of the parts of the Car:

CarPart 드 \forall partOf.Car

```
<owl:Class rdf:ID="CarPart">
<rdfs:subClassof>
```

\qquad defined locally

```
<owl:onProperty rdf:resource="\&base;partgf"/>
<owl:allValuesFrom rdf:resource="\#Car"/>
</owl:Restriction>
</rdfs:subClassOf>
```

</owl:Class>
owl:Class is used to specify the rdf:type
rdf:ID introduces new terms (compare with rdf:about to refer to terms)
\&base; is a namespace (assumed to be defined)

OWL

OWL:

- Is a web-compatible ontology language
- Syntax based on RDF/XML
- Semantics compatible with RDF and RDFS
- OWL-Lite and OWL-DL have a formal interpretation based on DLs
- Extensive documentation at http://www.w3c.org
- Editing Tools
- Protégé 4

