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!  Description Logic 
–  An important element of the Semantic Web 
–  Has a well-defined semantics 

»  A Concept is a non-empty set 
»  Enables subsumption (subClassOf 

relations) to be computed 
–  Tractable inference algorithms 

!  OWL (Web Ontology Language) 
–  An ontology language for the Semantic Web 

W3C standard 
–  Based on Description Logic 
–  RDF/XML syntax 

!  OWL 1.1 and 2 
–  Extend OWL 
–  Modify syntax 
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!  Description Logics allow formal concept definitions that 
can be reasoned about to be expressed 

–  Example Concept definitions: 
  Woman ≡ Person  Female 
  Man ≡ Person   ¬Woman 

–  Not a single logic, but a family of KR logics originating from 
KL-One e.g. AL, ALC,…,SHIQ,…SHIN(D) 

–  Subsets of first-order logic 
–  Well-defined model theory  
–  Known computational complexity 

!  FACT inference algorithm 
–  Prove subsumption 
–  Prove disjointness 
Further reading (not required reading):  
Horrocks, Ian. (1997) Optimising tableaux decision procedures for 

Description Logics, and many papers on-line  
Baader, F., Calvanese, D., McGuiness, D., Nardi, D., and Patel-Schneider, 

P. Description Logic Handbook (Chapter 2) 

Ch1-3 
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!  A Classifier (a reasoning engine) can be used to 
construct the class hierarchy from the definitions of 
individual concepts in the ontology 

!  Concept definitions are composed from primitive 
elements and so the ontology is more maintainable 

Man ! d1 

Woman ! d2 

Uncle ! d3 

Aunt ! d4 
classify 

Person ! d5 
� 

� 

Man Woman  

Uncle Aunt 

Person 

4 

KMM ontology Lecture 3 / 4 

Description Logics separate assertions and concept 
definitions 

!  A Box: Assertions 
–  E.g. hasChild(john, mary) 
–  This is the knowledge base 

 (we will not look at this aspect) 
!  T Box: Terminology 

–  The definitions of concepts in the ontology 
–  Example axioms for definitions 

»  C  D   [C is a subclass of D, D subsumes C]   
»  C ≡ D    [C is defined by the expression D] 
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Important terminology: 
!  Concept: class, category or type (as introduced earlier) 
!  Role: binary relation 

–  Attributes are functional roles 
!  Subsumption:  

–  D subsumes C if C is a subclass of D 
–  i.e. All Cs are Ds 

!  Unfoldable terminologies: 
–  The defined concept does not occur in the defining 

expression 
–  C ≡ D where C does not occur in the expression D 

!  Language families 
–  AL: Attributive Language 
–  ALC adds full negation to AL 
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Language elements for concept expressions: 
�  ‘Bottom’ the empty set 
�  ‘Top’ the universal set 
CN    Concept name 
C  Concept expression 
R  Role expressions, limited to RN Role Names 
¬  ‘Not’ forms the complement of a concept 
   ‘Union’ forms the union (OR) of two concepts 
   ‘Intersection’ forms the intersection (AND) of two concepts 
 "  ‘Value restriction’ 
 #   ‘Exists restriction’ 
Grammar for C: � | � | CN | ¬C |  C  D | C  D | "R.C |  #R.C  
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Language elements for terminological axioms: 

 C ≡ D   ‘is defined by’ C is equivalent to D 

 C  D   ‘is subsumed by’ C is subsumed by/is a subclass of D  
Terminological axioms make assertions about concept expressions. 
Grammar for terminological axioms: 

 C ≡ D | C  D 
The cases of most interest are where CN is given a  

    ‘necessary and sufficient definition’:  CN ≡ D 
And where CN is given a  

 ‘necessary definition’: CN  D 
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CN, DN Atomic concept Sets CN, DN 
� Bottom  Empty set 

� Universal concept, Top Universal set 

¬C Full Negation Complement of C 

C  D  Union Union of C and D 

C  D Intersection  Intersection of C and D 

"R.C Value restriction The set {x| "y R(x, y) $ y%C} 

#R.C Full existential restriction The set {x| #y R(x, y)& y%C} 

Terminological axioms: Inclusions and equalities 
Concepts:  C  D and C ≡ D 

Roles:         R  S and R ≡ S 
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Example concept expressions: 
Parent ≡ “Persons who have (amongst other things) some children” 

Person  #hasChild.�  

ParentOfBoys ≡ “Persons who have some children, and only have 
children that are male” 

Person  ( #hasChild.�)  ( "hasChild.Male) 

ScottishParent ≡ “Persons who only have children that drink 
(amongst other things) some IrnBru” 
  Person  ("hasChild. (#drink.IrnBru)) 

Each term (atomic or compound) defines a set as given by the right-
hand column in the table 

–  The model theory makes this more formal 
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ALC Model Theory: (wff)I = {…a set…};  RI is a set = {<d,r>,…} 
CNI, DNI Atomic concepts Non-empty sets CNI, DNI ' !I 

�I Bottom  ( 

�I Universal concept, 
Top 

!I 

(¬C)I Full Negation !I  \ CI 

  (C  D)I  Union CI ) DI 

(C  D)I Intersection  CI * DI 

("R.C)I Value restriction {x % !I | "y <x,y> % RI $ y%CI} 

(#R.C)I Full existential 
restriction 

{x % !I | #y <x,y> % RI & y%CI} 

Terminological axioms: Inclusions and equalities 
Concepts:  C  D iff CI ' DI  
                   C ≡ D  iff  CI = DI 
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Plant Animal 

a 

b 
c 

d 

e 

f 

Plant  Animal  � 
(disjointness)  

�   Plant  Animal 
(partition) 

{a,b,c,d,e,f} are instances; Plant and Animal are classes 

eats 

eats 

eats 

eats 
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Plant Animal 

a 

b 
c 

d 

e 

f 

#eats.Animal = {c,d,e} 

{a,b,c,d,e,f} are instances; Plant and Animal are classes 

eats 

eats 

eats 

eats 

"eats.Animal = {a,b,c,e,f} 
#eats.Animal  "eats.Animal = {c,e} 
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Model Theory 
 !I universal domain of individuals, let  
        !I  ={a,b,c,d,e,f} 
 eatsI set of pairs for the relation eats, let 
       eatsI = {<d,a>,<d,e>,<e,d>,<e,f>,<c,f>} 

          For all concepts C:  
         i) CI ' !I 

         ii)CI + ( 
  Let AnimalI  = {d,e,f} 
  , (¬Animal)I  = {a,b,c}   
  , ("eats. Animal)I = {a,b,c,e,f} 
  , (#eats. Animal)I = {c,d,e} 

MeatEater ≡ "eats. Animal =  {a,b,c,e,f} 
Vegetarian≡ "eats. ¬Animal =  {a,b,f} 
Omnivore ≡ #eats. Animal  =  {c,d,e} 

Inference: 
So MeatEater subsumes Vegetarian  

and Vegetarian is disjoint from Omnivore 
in this model, by these definitions  

- BUT the problem is to prove properties 
for ALL models 
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Plant Animal 

a 

b 
c 

d 

e 

f 

Omnivore= {c,d,e} 

{a,b,c,d,e,f} are instances; Plant and Animal are classes 

eats 

eats 

eats 

eats 

MeatEater= {a,b,c,e,f} Vegetarian = {a,b,f} partition? 
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Value restriction: "R.C 
R is a binary relation, e.g. eats(x, y)  
C is a concept expression, e.g. Animal 
Consider:                   "eats. Animal “things that eat only Animal” 

      defines the set x: "y if eats(x, y) then y % Animal   

In the formal model theory, where the domain is !I, eats is represented 
by a set of tuples, e.g.  

 eatsI = {<d,a>,<d,e>,<e,d>,<e,f>,<c,f>} meaning eats(d,a) eats(d,e)… 
 Animal I  = {d,e,f} 
The set corresponding to "eats. Animal is: 
 {x % !I | "y <x,y> % eatsI $ y% AnimalI} = {a,b,c,e,f} 
In general, "R.C is interpreted as: 
 {x % !I | "y <x,y> % RI $ y%CI}  

eats(b,a)   a%AnimalI      $   
F          F                 T 
F          T                 T 
T          F                 F 
T          T                 T 
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Existential restriction: #R.C 
R is a binary relation, e.g. eats(x, y)  
C is a concept expression, e.g. Animal 
Consider:                       #eats. Animal “things that eat some Animal” 

      defines the set x:     #y  eats(x, y) and y % Animal   

In the formal model theory, where the domain is !I, eats is represented 
by a set of tuples, e.g.  

 eatsI = {<d,a>,<d,e>,<e,d>,<e,f>,<c,f>} meaning eats(d, a) eats(d, e)… 
 AnimalI  = {b,e} 
The set corresponding to #eats. Animal is: 
 {x % !I | #y <x,y> % eatsI & y% AnimalI} = {c,d,e} 
In general, #R.C is interpreted as: 
 {x % !I | #y <x,y> % RI & y%CI} 
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!  Inference can expressed in terms of the model  
–  Satisfiability of C:  CI is non-empty 
–  Subsumption C  D iff CI ' DI   (“C is subsumed by D”) 
–  Equivalence   C ≡ D  iff  CI = DI 
–  Disjointness (C  D)  �  iff CI * DI = ( 

!  Tractable/terminating inference algorithms exist 

MeatEater ≡ "eats. Animal        
Vegetarian≡ "eats. ¬Animal  
Omnivore ≡ #eats. Animal 
Query:  
a) Vegetarian  MeatEater 
b) (MeatEater  Vegetarian)  � 
c) (Omnivore  Vegetarian )  � 

No 
No 
Yes 

Answer: 

� 

� 

MeatEater Omnivore  Vegetarian 
disjoint 
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Inference has 2 equivalent notions - so implementing 
one lets us prove all 4 properties 

!  Reduction to subsumption   : 
–  Unsatisfiability of C: C  � 
–  Equivalence   C ≡ D  iff C  D and D  C 
–  Disjointness (C  D)  � 

!  Reduction to unsatisfability CI = ( : 
–  Subsumption C  D iff (C  ¬D) is unsatisfiable 
–  Equivalence  C ≡ D  iff (C  ¬D) and (D  ¬C) are 

unsatisfiable 
–  Disjointness (C  D) is unsatisfiable 
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!  The FACT tableaux method 
–  A tractable, extendable procedure 

»  extendable to more expressive DLs than ALC e.g. with 
cardinality constraints and role expressions 

–  Assume an unfoldable terminology 
»  exclude: Human ≡ #hasParent. Human 

–  Assume all definitions are necessary and sufficient ≡ 
–  Proof is by unsatisfiability 

»  To show C and D are disjoint or in a subsumption 
relation, a goal expression G is formed, and 

»  the aim is to reject G 

!  4 steps: 
–  Steps 1-3 transform the goal into negation normal form 
–  Step 4 constructs a tableaux (a labelled tree) 
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1.  Given two expressions C and D, replace all defined terms by 
their definition, e.g. if C ≡ E  F then replace C by E  F  
!  Continue until all defined terms are replaced (E and F may 

be defined) 
!  Do this for C to get C- and D to get D-  

2.  Construct the goal G  
!  To show C and D are disjoint, G is C-  D-  
!  To show C  D , G is C-  ¬D- 

3.  Convert G to negation normal form using these equivalences: 
  ¬"R.A = #R.¬A  
  ¬#R.A = "R. ¬A 
  ¬ (A  B)  = ¬A  ¬B 
  ¬(A  B)   = ¬A  ¬B 
As a result, the ‘not’ operator is pushed to the inner-most term 

and only atomic concept expressions are negated  
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4. Tableaux method - FACT algorithm (Ian Horrocks) for ALC 
!  The tableaux is represented by a tree 
!  The tree is constructed from a root node, a0, whose label is 

the goal G: L(a0) = {G}  
!  Nodes represent individuals (a0 and a1 in the figure below) 
!  Edges represent roles (relationships) 

–  Edges are labelled with role names 
–  If the edge <x,y> is labelled R then “y is an R successor of x” 

!  L(x) is the label of node x 
–  The individual x must be in the extension of every concept in L(x) 

!  The tree contains a clash if {C, ¬C} ' L(x) 

a0 

             r 

a1 {¬C, C, D} 
Tree construction rules 

{("r.C  D)  #r.¬C}               

Goal 
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Tableaux method - rules that construct the tree 
1.   -rule: (C  D) % L(x) then add C and D to L(x) 

               {C  D}  =>         {C,D} 
2.    -rule:  (C  D) % L(x) then add C or D to L(x) 

                  {C  D}   =>         {C}  OR  {D} 
3.  #-rule: #R.C % L(x) then add L(<x,y>)=R (if it does not yet exist) and C % L(y) 
                     {#R.C} add an edge R to a new node {C} (unless both exist already) 

                        {C} 
4.     "-rule:"R.C % L(x) then IF there is some y s.t.  L(<x,y>)=R and L(y) does not 

contain C, add C to L(y) 
                     {"R.C}  and if there is an edge labelled R 

                        {C} 

a0 a0 

a0 a0 

a0 

a1 

a0 

a1 

R 

R 
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Tableaux method - summary of rules 
1.   -rule: (C  D) % L(x) then add C and D to L(x) 
2.   -rule:  (C  D) % L(x) then add C or D to L(x) 
3.  #-rule: #R.C % L(x) then add L(<x,y>)=R (if it does not yet exist)  

                 and C % L(y) 
4.  "-rule:"R.C % L(x) then IF there is some y s.t.  L(<x,y>)=R and L(y) 

does not contain C, add C to L(y) 

A)Are Vegetarian and Omnivore 
     disjoint ? 

{("eats.¬Animal)  (#eats.Animal)} 
a0 

Apply 1 then 3 then 4. 

eats 

{Animal a1 

(3) (4) 

¬Animal } 

(1) 
{"eats.¬Animal, #eats.Animal} 
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Are Vegetarian and Omnivore disjoint? 
 Vegetarian  Omnivore  � 

Replace named classes by their definition: 
Vegetarian ≡ "eats.¬Animal 
Omnivore ≡ #eats.Animal 

Construct goal: "eats.¬Animal  #eats.Animal 
  {"eats.¬Animal  #eats.Animal}     [already in NNF] 
  {"eats.¬Animal, #eats.Animal}       [a0:by  elimination split term in L(a0), 

                                                                      by # elimination add edge, and add 
                                                                       Animal to L(a1), L(a1)={Animal}]  
                                                                     [a0:by " elimination add ¬Animal to L(a1)] 
                    {Animal, ¬Animal}           Proven: tableaux shows a clash in L(a1) 

a0 

a1 

eats 



25 

KMM ontology Lecture 3 / 4 

Are Vegetarian and MeatEater disjoint? 
 Vegetarian  MeatEater  � 

Replace named classes by their definition: 
Vegetarian ≡ "eats.¬Animal 
MeatEater ≡ "eats.Animal 

Construct goal: "eats.¬Animal  "eats.Animal 
  {"eats.¬Animal  "eats.Animal}     [already in NNF] 
  {"eats.¬Animal, "eats.Animal}       [a0:by  elimination split term in L(a0)] 

No more rules apply, therefore disjointness cannot be proven. 
Note, " elimination cannot be applied unless an edge labelled eats already 

exists. 

a0 
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Does MeatEater subsume Vegetarian? 
 Vegetarian  MeatEater 
 Vegetarian  ¬MeatEater  � 

Replace named classes by their definition: 
Vegetarian ≡ "eats.¬Animal 
MeatEater  ≡ "eats.Animal 

Construct goal: "eats.¬Animal  ¬"eats.Animal 
  {"eats.¬Animal  #eats. ¬Animal}  [after conversion to NNF] 
  {"eats.¬Animal, #eats. ¬Animal}    [a0: by  elimination split term in L(a0), 

                                                                by # elimination add edge, and add 
                                                                     ¬Animal to L(a1), L(a1)={¬Animal}]  
                                                            [a0: " elimination would add ¬Animal to L(a1)] 
                    {¬Animal}        no more rules apply, subsumption is not proven 

a0 

a1 

eats 
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Does Vegetarian subsume Omnivore? 
  Omnivore  Vegetarian  
  Omnivore  ¬Vegetarian  � 

Replace named classes by their definition: 
Omnivore " #eats.Animal  
Vegetarian " "eats.¬Animal 

Construct goal: #eats.Animal  ¬"eats.¬Animal 
  {#eats.Animal  #eats.Animal}  [after conversion to NNF] 
  {#eats.Animal, #eats.Animal}    [a0: by  elimination split term in L(a0), 

                                                         by # elimination add edge, and add 
                                                              Animal to L(a1), L(a1)={Animal}]  

                    {Animal}        no more rules apply, subsumption is not proven 

a0 

a1 

eats 

Model: 
 !I = {a0, a1}  
eatsI ={<a0,a1>} 
AnimalI = {a1} 
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Show C and D are disjoint: [a0: Apply  elimination, 
then  # elimination to  
create edge to a1.  
Add (("s.B)  A) to L(a1).  
Apply " elim. to remaining  
a0 terms] 

{ ("r.¬A  "r.#s.¬B)  (# r.(("s.B)  A))} a0 

C " "r.¬A  "r.#s.¬B 
D " #r.(("s.B)  A) 

a2 

s 

 {¬B, B } 
clash closes tree for 
1st disjunct  

{ ¬A, #s.¬B, A} {¬A, #s.¬B, "s.B} OR 

a1 

r 

  {¬A, #s.¬B, (("s.B)  A)} 

{ "r.¬A, "r.#s.¬B, # r.(("s.B)  A)} 
{ "r.¬A  "r.#s.¬B, # r.(("s.B)  A)} 

[a1: apply  elim., then by # elim. 
add an edge labelled s to a2,  
add B to L(a2). Clash immediately 
closes tree for 2nd disjunct.  
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!  Defining concepts: 
–  Value restrictions are often combined with appropriate 

classes using intersection:  

–  Value restrictions may need an existential expression 
»  If we want to prevent people who don’t eat at all being 

classified as Vegan: 

– Classes are not disjoint by default 
»  Explicit disjointness assertions are needed 

–  Forall does not imply some 
    "eats.Fish  and "eats.¬Fish are not necessarily  
    contradictory unless #eats. � 

Vegan ≡ Person  "eats.Plant 
Vegetarian ≡ Person  "eats.(Plant  Dairy) 
Omnivore ≡ Person  #eats.Animal  #eats.(Plant  Dairy) 

Vegan ≡ Person  "eats.Plant  #eats.Plant 

30 

KMM ontology Lecture 3 / 4 

Tableaux method can be extended:   
!  Transitive roles, e.g. part-of is a transitive relation 
!  Number restrictions, e.g. 

ParentsWithThreeOrMoreChilden 
General Terminologies 
!  C  TD iff (C  ¬D)I = (  for all models I of T 

!  Add ¬C  D to all L(x) as a meta-constraint M	

!  Cope with non-terminating terminologies by a blocking 

rule 
–  If the label occurs earlier in the tree then stop 
–  Human  #hasParent.Human  
–  node (a1) is blocked showing satisifiability 

a0 
  {Human, # hasParent.Human,M} 

a1 
hasParent 

{Human, #hasParent.Human,M} 

{Human,M} M = ¬Human  #hasParent.Human  

BLOCKED  - do not continue to extend the tree 

{Human,M} 
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More ‘Syntactic’ Proofs 
!  Is there a model for: "eats.¬Animal  #eats.Animal  ? 

 [Previously, the tableaux was shown to have a 
clash] 

!  Apply the ¬" equivalence rule:  
"eats.¬Animal  #eats.Animal   = 
¬#eats.Animal  #eats.Animal    = 

¬ P  P  for P= #eats.Animal  
There is no intersection between ¬P and P for any concept 

expression P, and so the answer is no 
!  The tableaux construction rules can be modified to 

detect such contradictions 
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Relationship to first-order logic (advanced topic) 
 ( "R.C (x) = "y R(x, y) $ (C(y)      [for CN:  "y R(x, y) $ CN(y) ] 
 ( # R.C (x) = #y R(x, y) & (C(y)        [for CN:  #y R(x, y) & CN(y) ] 

Modal Logics 
#  Necessity/All time/Knows   

 [#P]v iff  "w r(v,w) $ [P]w 
�  Possibility/Some time/Believes 

 [�P]v iff #w r(v,w) & [P]w 
w0 

#P &�Q 
w1 

P 

w2 

P & Q 

r 

¬"R.C = #R.¬C  
¬#R.C = "R. ¬C 

¬#R P = �R ¬P  
¬�R P = #R ¬P 

DL  and (multi) modal K have the same duality between operators  
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!  ALC 
–  Sound and complete subsumption testing 

!  ALCN 
–  ALC + number restriction  . n R 

!  ALCR+  
–  ALC + transitively closed roles 

!  SHIQ 
–  SH family: ALC + transitive roles and role hierarchy 

!  SHOQ(D) 
–  Adds datatypes (D) and enumerated types to SHIQ 

!  SHIF(D) 
–  Adds datatypes transitive roles and role hierarchy, plus 

functional attributes to SHIQ (OWL-Lite) 
!  SHOIN(D) 

–  Adds nominals to class descriptions (oneOf {a,b,c}) and  
arbitrary cardinality constraints (OWL-DL) 
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!  Web Ontology Language (OWL) is W3C Recommendation 
for an ontology language for the web 

–  Has an XML syntax 
!  OWL is layered on RDF and RDFS (other W3C standards) 

–  Conforms to the RDF/RDFS semantics 
–  OWL has 3 versions: 

»  OWL-Lite - the simpler OWL DL 
»  OWL-DL  - more expressive DL 
»  OWL-Full - not confined to DL, closer to FOL 

–  OWL DLs extend ALC  
»  Allow instances to  be represented (A Box) 
»  Provides datatypes 
»  Provides number restrictions  

!  OWL 1.1 and 2 extend OWL DL 
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CN, DN Atomic concepts Non-empty sets CNI, DNI ' !I 

�I owl:Nothing ( 

�I owl:Thing !I 

(¬C)I Full Negation !I  \ CI 

  (C  D)I  Union CI ) DI 

(C  D)I Intersection  CI * DI 

("R.C)I Value restriction {x % !I | "y <x,y> % RI $ y%CI} 

(#R.C)I Full existential 
quantification 

{x % !I | #y <x,y> % RI & y%CI} 

Terminological axioms: Inclusions and equalities 
Concepts:  C  D iff CI ' DI  
                   C ≡ D  iff  CI = DI 

OWL makes a distinction between Object types and Datatypes 
Object types and Object properties are the same as in ALC 
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!  Datatypes !I 
D are distinct from Object types !I  

–  A datatype relation U, e.g. age, relates an object type, e.g. Person to 
an integer  
»  #age.Integer    [the set of things that have some Integer as age] 

–  Data types correspond to XML Schema types 
–  OWL also provides hasValue: U:v to represent specific datatype 

values 
»  age:29           [the set of things age 29] 

 D Data Range   DI ' !D
I 

("U.D)I Value restriction {x % !I | "y <x,y> % UI $ y%DI} 

(#U.D)I Full existential 
quantification 

{x % !I | #y <x,y> % UI & y%DI} 

Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen. 
From SHIQ and RDF to OWL: The making of a web ontology 

language. J. of Web Semantics, 1(1):7-26, 2003.
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!  OWL adds (unqualifying) number restrictions to ALC 
. n R    
–  Defines the set of instances, x,  for which there n 

or more instances, y, such that R(x, y) 
–  BusyParent !  . 3 hasChild 
$ n R 
–  Defines the set of instances, x,  for which there n 

or less instances, y, such that R(x, y) 

. n R Minimum 
cardinality {x % !I | #(<x,y> % RI) . n } 

$ n R Maximum 
cardinality 

{x % !I | #(<x,y> % RI) $ n } 
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Assume C and D are asserted to be disjoint in Protégé - 
example of an axiom. 

Q. Can anything be a subset of C and D? 
Define a new class: TestClass ≡ C  D  
Goal: C  D  
L(a0) = {C  D}  
L(a0) = {C, D} no clash 

Disjointness means: �  ¬C  ¬D        [equivalent to C  D  �] 

L(a0) = {C, D, ¬C  ¬D}  
i. L(a0) = {C, D, ¬C} clash  
ii. L(a0) = {C, D, ¬D} clash 
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!  Datatypes !I 
D and Object types !I  

BN, CN Non-empty sets BNI, CNI ' !I 

 D   DI ' !D
I 

  (B  C)I  {x % !I | x%BI / x%CI} 

(B  C)I {x % !I | x%BI & x%CI} 

("R.C)I {x % !I | "y (<x,y> % RI $ y%CI)} 

(#R.C)I {x % !I | #y <x,y> % RI & y%CI} 

("U.D)I {x % !I | "y (<x,y> % UI $ y%DI)} 

  (#U.D)I {x % !I | #y <x,y> % UI & y%DI} 
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!  Cardinality  
BN, CN Non-empty sets BNI, CNI ' !I 

("R.C)I {x % !I | "y (<x,y> % RI $ y%CI)} 

(#R.C)I {x % !I | #y <x,y> % RI & y%CI} 

( . n R )I {x % !I | #(<x,y> % RI) . n } 

( $ n R )I {x % !I | #(<x,y> % RI) $ n } 

hasWheelI = {<a0,a1> <a0,a2>} therefore: 
 .0 hasWheel; .1 hasWheel; .2hasWheel; and 

$ 2 hasWheel; $3 hasWheel    … 
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Bicycle ≡   . 2 hasWheel   $ 2 hasWheel  
                     "hasPart. ¬Engine 
!  Unicyles would have 1 wheel, tricycles 3 wheels, 

motorcycles would have 2 wheels and an Engine…… 
!  hasWheel is needed, rather than hasPart, as OWL-DL 

cannot specify the type of the range to be Wheel 
– Define hasWheel a subProperty of hasPart 
– Range of hasWheel: Wheel 

!  An example of ‘bias’ being introduced because of the 
expressivity of the representation  
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Domain and range specifications 
domain(R, C) ::   .1 R  C 

Consider:  
1)  #hasChild.Male      :anything with a male child 
2) Person  % #hasChild.Male :person with a male child: 

range(R, C) ::    �  "R.C 

The Person intersection in 2) is implicit in 1) if the 
domain of hasChild is defined as Person 
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!  RDF is a W3C standard, pre-dating OWL, for web semantics 
!  Identifies ‘things’ through URIs, and describes them in terms of 

simple properties and property values 
!  The triple is the basic unit: <subject predicate object> 

<http://www.example.org/index.html!
 http://purl.org/dc/elements/1.1/creator!
 http://www.example.org/staffid/85740> 

!  Subjects and objects are viewed as nodes in a graph, where 
predicates label the edges 

!  In RDF, predicates represent relationships between resources 
–  But RDF provides no way to define these predicates, or state other 

ontological properties 
–  RDF Schema addresses some of these problems 

ns1:index.html 
dc:creator ns2:85740 

“03/03/2004” dc:date 
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!  RDFS allows subclasses and the domain and range of properties to be 
defined (http://www.w3.org/TR/rdf-schema/) 

–  e.g. to state that creator has domain Document and range Person, two 
triples are needed: 

    <dc:creator rdfs:domain ns:Document>!
    <dc:creator rdfs:range  ns:Person> 

!rdf:Property      the class of properties, an instance of rdfs:Class 
rdfs:Resource      the class of everything  

!rdfs:Literal      the class of literal values e.g. string, integer 
!rdfs:Class       the class of RDF classes 

!rdf:type ! !  the instance-of relation 
!rdfs:domain      domain definition, an instance of rdf:Property  
!rdfs:range       range definition, an instance of rdf:Property  
!rdfs:subClassOf !  subclass relation!
!rdfs:subPropertyOf  subproperty relation 

 ! 
!  There is no effective reasoning algorithm for RDFS 

–  hence, OWL 
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!  The ALC-style syntax is not suitable for the WWW 
!  OWL needs to conform to the RDF/XML syntax 

(¬C) Full Negation < complementOf C >!
  (C  D) Union < unionOf C D >!

(C  D) Intersection  < intersectionOf C D >!

("R.C) 
Value restriction < Restriction !

  < onProperty R >!
  < allValuesFrom  C >>!

(#R.C) 
Full existential 
quantification 

< Restriction !
 < onProperty R >!
 < someValuesFrom C >>!

(C  D) = � Disjoint concepts < disjoint C D >!

C  D  Subclass of /subsumes < C <subClassOf D>>!

C ≡D Equivalent <C <equivalentClass D>>!

OWL/ALC DL Syntax OWL Abstract Syntax 
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Class definitions C  D and Property restrictions "R.C in RDF/XML syntax: 
DieselEngine is a subclass of Engine: DieselEngine  Engine 
<owl:Class rdf:ID =”DieselEngine">!
    <rdfs:subClassOf rdf:resource=”&base;Engine"/>!
</owl:Class>!

CarPart is a subclass of the parts of the Car:  
CarPart  "partOf.Car !
<owl:Class rdf:ID=”CarPart">!
    <rdfs:subClassOf>!
      <owl:Restriction>!
        <owl:onProperty rdf:resource=“&base;partOf”/>!
        <owl:allValuesFrom rdf:resource=“#Car”/>!
      </owl:Restriction>!
    </rdfs:subClassOf>!
</owl:Class>!
<owl:Class> is used to specify the rdf:type 
rdf:ID introduces new terms (compare with rdf:about to refer to terms) 
&base; is a namespace (assumed to be defined)  

imported 

defined locally 
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CarEngine is equivalent to the intersection of Engine and "partOf.Car : 
CarEngine ≡ Engine  "partOf.Car 

<owl:Class rdf:ID=”CarEngine">!
  <owl:equivalentClass>!
    <owl:Class>!
    <owl:intersectionOf rdf:parseType=“Collection”>!
    !  <owl:Class rdf:about=“#Engine”/>!
       <owl:Restriction>!
           <owl:onProperty rdf:resource=“&base;partOf”/>!
           <owl:allValuesFrom rdf:resource=“#Car”/>!
       </owl:Restriction>!
    </owl:intersectionOf>!
    </owl:Class>!
    </owl:equivalentClass>!
 </owl:Class> 

Protégé reads and writes this syntax! 
Use HP’s Jena toolkit in Java applications that need to read/write/

manipulate RDF/S or OWL. 
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OWL: 
!  Is a web-compatible ontology language 
!  Syntax based on RDF/XML 
!  Semantics compatible with RDF and RDFS 
!  OWL-Lite and OWL-DL have a formal interpretation 

based on DLs 
!  Extensive documentation at http://www.w3c.org 
!  Editing Tools 

–  Protégé 4 


