
1

KMM ontology Lecture 3 / 4

!  Description Logic
–  An important element of the Semantic Web
–  Has a well-defined semantics

»  A Concept is a non-empty set
»  Enables subsumption (subClassOf

relations) to be computed
–  Tractable inference algorithms

!  OWL (Web Ontology Language)
–  An ontology language for the Semantic Web

W3C standard
–  Based on Description Logic
–  RDF/XML syntax

!  OWL 1.1 and 2
–  Extend OWL
–  Modify syntax

2

KMM ontology Lecture 3 / 4

!  Description Logics allow formal concept definitions that
can be reasoned about to be expressed

–  Example Concept definitions:
 Woman ≡ Person Female
 Man ≡ Person ¬Woman

–  Not a single logic, but a family of KR logics originating from
KL-One e.g. AL, ALC,…,SHIQ,…SHIN(D)

–  Subsets of first-order logic
–  Well-defined model theory
–  Known computational complexity

!  FACT inference algorithm
–  Prove subsumption
–  Prove disjointness
Further reading (not required reading):
Horrocks, Ian. (1997) Optimising tableaux decision procedures for

Description Logics, and many papers on-line
Baader, F., Calvanese, D., McGuiness, D., Nardi, D., and Patel-Schneider,

P. Description Logic Handbook (Chapter 2)

Ch1-3

3

KMM ontology Lecture 3 / 4

!  A Classifier (a reasoning engine) can be used to
construct the class hierarchy from the definitions of
individual concepts in the ontology

!  Concept definitions are composed from primitive
elements and so the ontology is more maintainable

Man ! d1

Woman ! d2

Uncle ! d3

Aunt ! d4
classify

Person ! d5
�

�

Man Woman

Uncle Aunt

Person

4

KMM ontology Lecture 3 / 4

Description Logics separate assertions and concept
definitions

!  A Box: Assertions
–  E.g. hasChild(john, mary)
–  This is the knowledge base

 (we will not look at this aspect)
!  T Box: Terminology

–  The definitions of concepts in the ontology
–  Example axioms for definitions

»  C D [C is a subclass of D, D subsumes C]
»  C ≡ D [C is defined by the expression D]

5

KMM ontology Lecture 3 / 4

Important terminology:
!  Concept: class, category or type (as introduced earlier)
!  Role: binary relation

–  Attributes are functional roles
!  Subsumption:

–  D subsumes C if C is a subclass of D
–  i.e. All Cs are Ds

!  Unfoldable terminologies:
–  The defined concept does not occur in the defining

expression
–  C ≡ D where C does not occur in the expression D

!  Language families
–  AL: Attributive Language
–  ALC adds full negation to AL

6

KMM ontology Lecture 3 / 4

Language elements for concept expressions:
� ‘Bottom’ the empty set
� ‘Top’ the universal set
CN Concept name
C Concept expression
R Role expressions, limited to RN Role Names
¬ ‘Not’ forms the complement of a concept
 ‘Union’ forms the union (OR) of two concepts
 ‘Intersection’ forms the intersection (AND) of two concepts
 " ‘Value restriction’
 # ‘Exists restriction’
Grammar for C: � | � | CN | ¬C | C D | C D | "R.C | #R.C

7

KMM ontology Lecture 3 / 4

Language elements for terminological axioms:

 C ≡ D ‘is defined by’ C is equivalent to D

 C D ‘is subsumed by’ C is subsumed by/is a subclass of D
Terminological axioms make assertions about concept expressions.
Grammar for terminological axioms:

 C ≡ D | C D
The cases of most interest are where CN is given a

 ‘necessary and sufficient definition’: CN ≡ D
And where CN is given a

 ‘necessary definition’: CN D

8

KMM ontology Lecture 3 / 4

CN, DN Atomic concept Sets CN, DN
� Bottom Empty set

� Universal concept, Top Universal set

¬C Full Negation Complement of C

C D Union Union of C and D

C D Intersection Intersection of C and D

"R.C Value restriction The set {x| "y R(x, y) $ y%C}

#R.C Full existential restriction The set {x| #y R(x, y)& y%C}

Terminological axioms: Inclusions and equalities
Concepts: C D and C ≡ D

Roles: R S and R ≡ S

9

KMM ontology Lecture 3 / 4

Example concept expressions:
Parent ≡ “Persons who have (amongst other things) some children”

Person #hasChild.�

ParentOfBoys ≡ “Persons who have some children, and only have
children that are male”

Person (#hasChild.�) ("hasChild.Male)

ScottishParent ≡ “Persons who only have children that drink
(amongst other things) some IrnBru”
 Person ("hasChild. (#drink.IrnBru))

Each term (atomic or compound) defines a set as given by the right-
hand column in the table

–  The model theory makes this more formal

10

KMM ontology Lecture 3 / 4

ALC Model Theory: (wff)I = {…a set…}; RI is a set = {<d,r>,…}
CNI, DNI Atomic concepts Non-empty sets CNI, DNI ' !I

�I Bottom (

�I Universal concept,
Top

!I

(¬C)I Full Negation !I \ CI

 (C D)I Union CI) DI

(C D)I Intersection CI * DI

("R.C)I Value restriction {x % !I | "y <x,y> % RI $ y%CI}

(#R.C)I Full existential
restriction

{x % !I | #y <x,y> % RI & y%CI}

Terminological axioms: Inclusions and equalities
Concepts: C D iff CI ' DI
 C ≡ D iff CI = DI

11

KMM ontology Lecture 3 / 4

Plant Animal

a

b
c

d

e

f

Plant Animal �
(disjointness)

� Plant Animal
(partition)

{a,b,c,d,e,f} are instances; Plant and Animal are classes

eats

eats

eats

eats

12

KMM ontology Lecture 3 / 4

Plant Animal

a

b
c

d

e

f

#eats.Animal = {c,d,e}

{a,b,c,d,e,f} are instances; Plant and Animal are classes

eats

eats

eats

eats

"eats.Animal = {a,b,c,e,f}
#eats.Animal "eats.Animal = {c,e}

13

KMM ontology Lecture 3 / 4

Model Theory
 !I universal domain of individuals, let
 !I ={a,b,c,d,e,f}
 eatsI set of pairs for the relation eats, let
 eatsI = {<d,a>,<d,e>,<e,d>,<e,f>,<c,f>}

 For all concepts C:
 i) CI ' !I

 ii)CI + (
 Let AnimalI = {d,e,f}
 , (¬Animal)I = {a,b,c}
 , ("eats. Animal)I = {a,b,c,e,f}
 , (#eats. Animal)I = {c,d,e}

MeatEater ≡ "eats. Animal = {a,b,c,e,f}
Vegetarian≡ "eats. ¬Animal = {a,b,f}
Omnivore ≡ #eats. Animal = {c,d,e}

Inference:
So MeatEater subsumes Vegetarian

and Vegetarian is disjoint from Omnivore
in this model, by these definitions

- BUT the problem is to prove properties
for ALL models

14

KMM ontology Lecture 3 / 4

Plant Animal

a

b
c

d

e

f

Omnivore= {c,d,e}

{a,b,c,d,e,f} are instances; Plant and Animal are classes

eats

eats

eats

eats

MeatEater= {a,b,c,e,f} Vegetarian = {a,b,f} partition?

15

KMM ontology Lecture 3 / 4

Value restriction: "R.C
R is a binary relation, e.g. eats(x, y)
C is a concept expression, e.g. Animal
Consider: "eats. Animal “things that eat only Animal”

 defines the set x: "y if eats(x, y) then y % Animal

In the formal model theory, where the domain is !I, eats is represented
by a set of tuples, e.g.

 eatsI = {<d,a>,<d,e>,<e,d>,<e,f>,<c,f>} meaning eats(d,a) eats(d,e)…
 Animal I = {d,e,f}
The set corresponding to "eats. Animal is:
 {x % !I | "y <x,y> % eatsI $ y% AnimalI} = {a,b,c,e,f}
In general, "R.C is interpreted as:
 {x % !I | "y <x,y> % RI $ y%CI}

eats(b,a) a%AnimalI $
F F T
F T T
T F F
T T T

16

KMM ontology Lecture 3 / 4

Existential restriction: #R.C
R is a binary relation, e.g. eats(x, y)
C is a concept expression, e.g. Animal
Consider: #eats. Animal “things that eat some Animal”

 defines the set x: #y eats(x, y) and y % Animal

In the formal model theory, where the domain is !I, eats is represented
by a set of tuples, e.g.

 eatsI = {<d,a>,<d,e>,<e,d>,<e,f>,<c,f>} meaning eats(d, a) eats(d, e)…
 AnimalI = {b,e}
The set corresponding to #eats. Animal is:
 {x % !I | #y <x,y> % eatsI & y% AnimalI} = {c,d,e}
In general, #R.C is interpreted as:
 {x % !I | #y <x,y> % RI & y%CI}

17

KMM ontology Lecture 3 / 4

!  Inference can expressed in terms of the model
–  Satisfiability of C: CI is non-empty
–  Subsumption C D iff CI ' DI (“C is subsumed by D”)
–  Equivalence C ≡ D iff CI = DI
–  Disjointness (C D) � iff CI * DI = (

!  Tractable/terminating inference algorithms exist

MeatEater ≡ "eats. Animal
Vegetarian≡ "eats. ¬Animal
Omnivore ≡ #eats. Animal
Query:
a) Vegetarian MeatEater
b) (MeatEater Vegetarian) �
c) (Omnivore Vegetarian) �

No
No
Yes

Answer:

�

�

MeatEater Omnivore Vegetarian
disjoint

18

KMM ontology Lecture 3 / 4

Inference has 2 equivalent notions - so implementing
one lets us prove all 4 properties

!  Reduction to subsumption :
–  Unsatisfiability of C: C �
–  Equivalence C ≡ D iff C D and D C
–  Disjointness (C D) �

!  Reduction to unsatisfability CI = (:
–  Subsumption C D iff (C ¬D) is unsatisfiable
–  Equivalence C ≡ D iff (C ¬D) and (D ¬C) are

unsatisfiable
–  Disjointness (C D) is unsatisfiable

19

KMM ontology Lecture 3 / 4

!  The FACT tableaux method
–  A tractable, extendable procedure

»  extendable to more expressive DLs than ALC e.g. with
cardinality constraints and role expressions

–  Assume an unfoldable terminology
»  exclude: Human ≡ #hasParent. Human

–  Assume all definitions are necessary and sufficient ≡
–  Proof is by unsatisfiability

»  To show C and D are disjoint or in a subsumption
relation, a goal expression G is formed, and

»  the aim is to reject G

!  4 steps:
–  Steps 1-3 transform the goal into negation normal form
–  Step 4 constructs a tableaux (a labelled tree)

20

KMM ontology Lecture 3 / 4

1.  Given two expressions C and D, replace all defined terms by
their definition, e.g. if C ≡ E F then replace C by E F
!  Continue until all defined terms are replaced (E and F may

be defined)
!  Do this for C to get C- and D to get D-

2.  Construct the goal G
!  To show C and D are disjoint, G is C- D-
!  To show C D , G is C- ¬D-

3.  Convert G to negation normal form using these equivalences:
 ¬"R.A = #R.¬A
 ¬#R.A = "R. ¬A
 ¬ (A B) = ¬A ¬B
 ¬(A B) = ¬A ¬B
As a result, the ‘not’ operator is pushed to the inner-most term

and only atomic concept expressions are negated

21

KMM ontology Lecture 3 / 4

4. Tableaux method - FACT algorithm (Ian Horrocks) for ALC
!  The tableaux is represented by a tree
!  The tree is constructed from a root node, a0, whose label is

the goal G: L(a0) = {G}
!  Nodes represent individuals (a0 and a1 in the figure below)
!  Edges represent roles (relationships)

–  Edges are labelled with role names
–  If the edge <x,y> is labelled R then “y is an R successor of x”

!  L(x) is the label of node x
–  The individual x must be in the extension of every concept in L(x)

!  The tree contains a clash if {C, ¬C} ' L(x)

a0

 r

a1 {¬C, C, D}
Tree construction rules

{("r.C D) #r.¬C}

Goal

22

KMM ontology Lecture 3 / 4

Tableaux method - rules that construct the tree
1.  -rule: (C D) % L(x) then add C and D to L(x)

 {C D} => {C,D}
2.  -rule: (C D) % L(x) then add C or D to L(x)

 {C D} => {C} OR {D}
3.  #-rule: #R.C % L(x) then add L(<x,y>)=R (if it does not yet exist) and C % L(y)
 {#R.C} add an edge R to a new node {C} (unless both exist already)

 {C}
4. "-rule:"R.C % L(x) then IF there is some y s.t. L(<x,y>)=R and L(y) does not

contain C, add C to L(y)
 {"R.C} and if there is an edge labelled R

 {C}

a0 a0

a0 a0

a0

a1

a0

a1

R

R

23

KMM ontology Lecture 3 / 4

Tableaux method - summary of rules
1.  -rule: (C D) % L(x) then add C and D to L(x)
2.  -rule: (C D) % L(x) then add C or D to L(x)
3.  #-rule: #R.C % L(x) then add L(<x,y>)=R (if it does not yet exist)

 and C % L(y)
4.  "-rule:"R.C % L(x) then IF there is some y s.t. L(<x,y>)=R and L(y)

does not contain C, add C to L(y)

A)Are Vegetarian and Omnivore
 disjoint ?

{("eats.¬Animal) (#eats.Animal)}
a0

Apply 1 then 3 then 4.

eats

{Animal a1

(3) (4)

¬Animal }

(1)
{"eats.¬Animal, #eats.Animal}

24

KMM ontology Lecture 3 / 4

Are Vegetarian and Omnivore disjoint?
 Vegetarian Omnivore �

Replace named classes by their definition:
Vegetarian ≡ "eats.¬Animal
Omnivore ≡ #eats.Animal

Construct goal: "eats.¬Animal #eats.Animal
 {"eats.¬Animal #eats.Animal} [already in NNF]
 {"eats.¬Animal, #eats.Animal} [a0:by elimination split term in L(a0),

 by # elimination add edge, and add
 Animal to L(a1), L(a1)={Animal}]
 [a0:by " elimination add ¬Animal to L(a1)]
 {Animal, ¬Animal} Proven: tableaux shows a clash in L(a1)

a0

a1

eats

25

KMM ontology Lecture 3 / 4

Are Vegetarian and MeatEater disjoint?
 Vegetarian MeatEater �

Replace named classes by their definition:
Vegetarian ≡ "eats.¬Animal
MeatEater ≡ "eats.Animal

Construct goal: "eats.¬Animal "eats.Animal
 {"eats.¬Animal "eats.Animal} [already in NNF]
 {"eats.¬Animal, "eats.Animal} [a0:by elimination split term in L(a0)]

No more rules apply, therefore disjointness cannot be proven.
Note, " elimination cannot be applied unless an edge labelled eats already

exists.

a0

26

KMM ontology Lecture 3 / 4

Does MeatEater subsume Vegetarian?
 Vegetarian MeatEater
 Vegetarian ¬MeatEater �

Replace named classes by their definition:
Vegetarian ≡ "eats.¬Animal
MeatEater ≡ "eats.Animal

Construct goal: "eats.¬Animal ¬"eats.Animal
 {"eats.¬Animal #eats. ¬Animal} [after conversion to NNF]
 {"eats.¬Animal, #eats. ¬Animal} [a0: by elimination split term in L(a0),

 by # elimination add edge, and add
 ¬Animal to L(a1), L(a1)={¬Animal}]
 [a0: " elimination would add ¬Animal to L(a1)]
 {¬Animal} no more rules apply, subsumption is not proven

a0

a1

eats

27

KMM ontology Lecture 3 / 4

Does Vegetarian subsume Omnivore?
 Omnivore Vegetarian
 Omnivore ¬Vegetarian �

Replace named classes by their definition:
Omnivore " #eats.Animal
Vegetarian " "eats.¬Animal

Construct goal: #eats.Animal ¬"eats.¬Animal
 {#eats.Animal #eats.Animal} [after conversion to NNF]
 {#eats.Animal, #eats.Animal} [a0: by elimination split term in L(a0),

 by # elimination add edge, and add
 Animal to L(a1), L(a1)={Animal}]

 {Animal} no more rules apply, subsumption is not proven

a0

a1

eats

Model:
 !I = {a0, a1}
eatsI ={<a0,a1>}
AnimalI = {a1}

28

KMM ontology Lecture 3 / 4

Show C and D are disjoint: [a0: Apply elimination,
then # elimination to
create edge to a1.
Add (("s.B) A) to L(a1).
Apply " elim. to remaining
a0 terms]

{ ("r.¬A "r.#s.¬B) (# r.(("s.B) A))} a0

C " "r.¬A "r.#s.¬B
D " #r.(("s.B) A)

a2

s

 {¬B, B }
clash closes tree for
1st disjunct

{ ¬A, #s.¬B, A} {¬A, #s.¬B, "s.B} OR

a1

r

 {¬A, #s.¬B, (("s.B) A)}

{ "r.¬A, "r.#s.¬B, # r.(("s.B) A)}
{ "r.¬A "r.#s.¬B, # r.(("s.B) A)}

[a1: apply elim., then by # elim.
add an edge labelled s to a2,
add B to L(a2). Clash immediately
closes tree for 2nd disjunct.

29

KMM ontology Lecture 3 / 4

!  Defining concepts:
–  Value restrictions are often combined with appropriate

classes using intersection:

–  Value restrictions may need an existential expression
»  If we want to prevent people who don’t eat at all being

classified as Vegan:

– Classes are not disjoint by default
»  Explicit disjointness assertions are needed

–  Forall does not imply some
 "eats.Fish and "eats.¬Fish are not necessarily
 contradictory unless #eats. �

Vegan ≡ Person "eats.Plant
Vegetarian ≡ Person "eats.(Plant Dairy)
Omnivore ≡ Person #eats.Animal #eats.(Plant Dairy)

Vegan ≡ Person "eats.Plant #eats.Plant

30

KMM ontology Lecture 3 / 4

Tableaux method can be extended:
!  Transitive roles, e.g. part-of is a transitive relation
!  Number restrictions, e.g.

ParentsWithThreeOrMoreChilden
General Terminologies
!  C TD iff (C ¬D)I = (for all models I of T

!  Add ¬C D to all L(x) as a meta-constraint M	

!  Cope with non-terminating terminologies by a blocking

rule
–  If the label occurs earlier in the tree then stop
–  Human #hasParent.Human
–  node (a1) is blocked showing satisifiability

a0
 {Human, # hasParent.Human,M}

a1
hasParent

{Human, #hasParent.Human,M}

{Human,M} M = ¬Human #hasParent.Human

BLOCKED - do not continue to extend the tree

{Human,M}

31

KMM ontology Lecture 3 / 4

More ‘Syntactic’ Proofs
!  Is there a model for: "eats.¬Animal #eats.Animal ?

 [Previously, the tableaux was shown to have a
clash]

!  Apply the ¬" equivalence rule:
"eats.¬Animal #eats.Animal =
¬#eats.Animal #eats.Animal =

¬ P P for P= #eats.Animal
There is no intersection between ¬P and P for any concept

expression P, and so the answer is no
!  The tableaux construction rules can be modified to

detect such contradictions

32

KMM ontology Lecture 3 / 4

Relationship to first-order logic (advanced topic)
 ("R.C (x) = "y R(x, y) $ (C(y) [for CN: "y R(x, y) $ CN(y)]
 (# R.C (x) = #y R(x, y) & (C(y) [for CN: #y R(x, y) & CN(y)]

Modal Logics
Necessity/All time/Knows

 [#P]v iff "w r(v,w) $ [P]w
� Possibility/Some time/Believes

 [�P]v iff #w r(v,w) & [P]w
w0

#P &�Q
w1

P

w2

P & Q

r

¬"R.C = #R.¬C
¬#R.C = "R. ¬C

¬#R P = �R ¬P
¬�R P = #R ¬P

DL and (multi) modal K have the same duality between operators

33

KMM ontology Lecture 3 / 4

!  ALC
–  Sound and complete subsumption testing

!  ALCN
–  ALC + number restriction . n R

!  ALCR+
–  ALC + transitively closed roles

!  SHIQ
–  SH family: ALC + transitive roles and role hierarchy

!  SHOQ(D)
–  Adds datatypes (D) and enumerated types to SHIQ

!  SHIF(D)
–  Adds datatypes transitive roles and role hierarchy, plus

functional attributes to SHIQ (OWL-Lite)
!  SHOIN(D)

–  Adds nominals to class descriptions (oneOf {a,b,c}) and
arbitrary cardinality constraints (OWL-DL)

34

KMM ontology Lecture 3 / 4

!  Web Ontology Language (OWL) is W3C Recommendation
for an ontology language for the web

–  Has an XML syntax
!  OWL is layered on RDF and RDFS (other W3C standards)

–  Conforms to the RDF/RDFS semantics
–  OWL has 3 versions:

»  OWL-Lite - the simpler OWL DL
»  OWL-DL - more expressive DL
»  OWL-Full - not confined to DL, closer to FOL

–  OWL DLs extend ALC
»  Allow instances to be represented (A Box)
»  Provides datatypes
»  Provides number restrictions

!  OWL 1.1 and 2 extend OWL DL

35

KMM ontology Lecture 3 / 4

CN, DN Atomic concepts Non-empty sets CNI, DNI ' !I

�I owl:Nothing (

�I owl:Thing !I

(¬C)I Full Negation !I \ CI

 (C D)I Union CI) DI

(C D)I Intersection CI * DI

("R.C)I Value restriction {x % !I | "y <x,y> % RI $ y%CI}

(#R.C)I Full existential
quantification

{x % !I | #y <x,y> % RI & y%CI}

Terminological axioms: Inclusions and equalities
Concepts: C D iff CI ' DI
 C ≡ D iff CI = DI

OWL makes a distinction between Object types and Datatypes
Object types and Object properties are the same as in ALC

36

KMM ontology Lecture 3 / 4

!  Datatypes !I
D are distinct from Object types !I

–  A datatype relation U, e.g. age, relates an object type, e.g. Person to
an integer
»  #age.Integer [the set of things that have some Integer as age]

–  Data types correspond to XML Schema types
–  OWL also provides hasValue: U:v to represent specific datatype

values
»  age:29 [the set of things age 29]

 D Data Range DI ' !D
I

("U.D)I Value restriction {x % !I | "y <x,y> % UI $ y%DI}

(#U.D)I Full existential
quantification

{x % !I | #y <x,y> % UI & y%DI}

Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen.
From SHIQ and RDF to OWL: The making of a web ontology

language. J. of Web Semantics, 1(1):7-26, 2003.

37

KMM ontology Lecture 3 / 4

!  OWL adds (unqualifying) number restrictions to ALC
. n R
–  Defines the set of instances, x, for which there n

or more instances, y, such that R(x, y)
–  BusyParent ! . 3 hasChild
$ n R
–  Defines the set of instances, x, for which there n

or less instances, y, such that R(x, y)

. n R Minimum
cardinality {x % !I | #(<x,y> % RI) . n }

$ n R Maximum
cardinality

{x % !I | #(<x,y> % RI) $ n }

38

KMM ontology Lecture 3 / 4

Assume C and D are asserted to be disjoint in Protégé -
example of an axiom.

Q. Can anything be a subset of C and D?
Define a new class: TestClass ≡ C D
Goal: C D
L(a0) = {C D}
L(a0) = {C, D} no clash

Disjointness means: � ¬C ¬D [equivalent to C D �]

L(a0) = {C, D, ¬C ¬D}
i. L(a0) = {C, D, ¬C} clash
ii. L(a0) = {C, D, ¬D} clash

39

KMM ontology Lecture 3 / 4

!  Datatypes !I
D and Object types !I

BN, CN Non-empty sets BNI, CNI ' !I

 D DI ' !D
I

 (B C)I {x % !I | x%BI / x%CI}

(B C)I {x % !I | x%BI & x%CI}

("R.C)I {x % !I | "y (<x,y> % RI $ y%CI)}

(#R.C)I {x % !I | #y <x,y> % RI & y%CI}

("U.D)I {x % !I | "y (<x,y> % UI $ y%DI)}

 (#U.D)I {x % !I | #y <x,y> % UI & y%DI}

40

KMM ontology Lecture 3 / 4

!  Cardinality
BN, CN Non-empty sets BNI, CNI ' !I

("R.C)I {x % !I | "y (<x,y> % RI $ y%CI)}

(#R.C)I {x % !I | #y <x,y> % RI & y%CI}

(. n R)I {x % !I | #(<x,y> % RI) . n }

($ n R)I {x % !I | #(<x,y> % RI) $ n }

hasWheelI = {<a0,a1> <a0,a2>} therefore:
 .0 hasWheel; .1 hasWheel; .2hasWheel; and

$ 2 hasWheel; $3 hasWheel …

41

KMM ontology Lecture 3 / 4

Bicycle ≡ . 2 hasWheel $ 2 hasWheel
 "hasPart. ¬Engine
!  Unicyles would have 1 wheel, tricycles 3 wheels,

motorcycles would have 2 wheels and an Engine……
!  hasWheel is needed, rather than hasPart, as OWL-DL

cannot specify the type of the range to be Wheel
– Define hasWheel a subProperty of hasPart
– Range of hasWheel: Wheel

!  An example of ‘bias’ being introduced because of the
expressivity of the representation

42

KMM ontology Lecture 3 / 4

Domain and range specifications
domain(R, C) :: .1 R C

Consider:
1)  #hasChild.Male :anything with a male child
2) Person % #hasChild.Male :person with a male child:

range(R, C) :: � "R.C

The Person intersection in 2) is implicit in 1) if the
domain of hasChild is defined as Person

43

KMM ontology Lecture 3 / 4

!  RDF is a W3C standard, pre-dating OWL, for web semantics
!  Identifies ‘things’ through URIs, and describes them in terms of

simple properties and property values
!  The triple is the basic unit: <subject predicate object>

<http://www.example.org/index.html!
 http://purl.org/dc/elements/1.1/creator!
 http://www.example.org/staffid/85740>

!  Subjects and objects are viewed as nodes in a graph, where
predicates label the edges

!  In RDF, predicates represent relationships between resources
–  But RDF provides no way to define these predicates, or state other

ontological properties
–  RDF Schema addresses some of these problems

ns1:index.html
dc:creator ns2:85740

“03/03/2004” dc:date

44

KMM ontology Lecture 3 / 4

!  RDFS allows subclasses and the domain and range of properties to be
defined (http://www.w3.org/TR/rdf-schema/)

–  e.g. to state that creator has domain Document and range Person, two
triples are needed:

 <dc:creator rdfs:domain ns:Document>!
 <dc:creator rdfs:range ns:Person>

!rdf:Property the class of properties, an instance of rdfs:Class
rdfs:Resource the class of everything

!rdfs:Literal the class of literal values e.g. string, integer
!rdfs:Class the class of RDF classes

!rdf:type ! ! the instance-of relation
!rdfs:domain domain definition, an instance of rdf:Property
!rdfs:range range definition, an instance of rdf:Property
!rdfs:subClassOf ! subclass relation!
!rdfs:subPropertyOf subproperty relation

 !
!  There is no effective reasoning algorithm for RDFS

–  hence, OWL

45

KMM ontology Lecture 3 / 4

!  The ALC-style syntax is not suitable for the WWW
!  OWL needs to conform to the RDF/XML syntax

(¬C) Full Negation < complementOf C >!
 (C D) Union < unionOf C D >!

(C D) Intersection < intersectionOf C D >!

("R.C)
Value restriction < Restriction !

 < onProperty R >!
 < allValuesFrom C >>!

(#R.C)
Full existential
quantification

< Restriction !
 < onProperty R >!
 < someValuesFrom C >>!

(C D) = � Disjoint concepts < disjoint C D >!

C D Subclass of /subsumes < C <subClassOf D>>!

C ≡D Equivalent <C <equivalentClass D>>!

OWL/ALC DL Syntax OWL Abstract Syntax

46

KMM ontology Lecture 3 / 4

Class definitions C D and Property restrictions "R.C in RDF/XML syntax:
DieselEngine is a subclass of Engine: DieselEngine Engine
<owl:Class rdf:ID =”DieselEngine">!
 <rdfs:subClassOf rdf:resource=”&base;Engine"/>!
</owl:Class>!

CarPart is a subclass of the parts of the Car:
CarPart "partOf.Car !
<owl:Class rdf:ID=”CarPart">!
 <rdfs:subClassOf>!
 <owl:Restriction>!
 <owl:onProperty rdf:resource=“&base;partOf”/>!
 <owl:allValuesFrom rdf:resource=“#Car”/>!
 </owl:Restriction>!
 </rdfs:subClassOf>!
</owl:Class>!
<owl:Class> is used to specify the rdf:type
rdf:ID introduces new terms (compare with rdf:about to refer to terms)
&base; is a namespace (assumed to be defined)

imported

defined locally

47

KMM ontology Lecture 3 / 4

CarEngine is equivalent to the intersection of Engine and "partOf.Car :
CarEngine ≡ Engine "partOf.Car

<owl:Class rdf:ID=”CarEngine">!
 <owl:equivalentClass>!
 <owl:Class>!
 <owl:intersectionOf rdf:parseType=“Collection”>!
 ! <owl:Class rdf:about=“#Engine”/>!
 <owl:Restriction>!
 <owl:onProperty rdf:resource=“&base;partOf”/>!
 <owl:allValuesFrom rdf:resource=“#Car”/>!
 </owl:Restriction>!
 </owl:intersectionOf>!
 </owl:Class>!
 </owl:equivalentClass>!
 </owl:Class>

Protégé reads and writes this syntax!
Use HP’s Jena toolkit in Java applications that need to read/write/

manipulate RDF/S or OWL.

48

KMM ontology Lecture 3 / 4

OWL:
!  Is a web-compatible ontology language
!  Syntax based on RDF/XML
!  Semantics compatible with RDF and RDFS
!  OWL-Lite and OWL-DL have a formal interpretation

based on DLs
!  Extensive documentation at http://www.w3c.org
!  Editing Tools

–  Protégé 4

