Description Logic and OWL Description Logic

Description Logics allow formal concept definitions that
can be reasoned about to be expressed

— Example Concept definitions:
Woman = Person N Female

e Description Logic ®
— An important element of the Semantic Web
— Has a well-defined semantics
» A Concept is a non-empty set

» Enables subsumption (subClassOf Man = Person 1 “"“Woman
relations) to be computed — Not a single logic, but a family of KR logics originating from
— Tractable inference algorithms KL-One e.g. AL, ALC,...,SHIQ,...SHIN(D)

— Subsets of first-order logic
® OWL (Web Ont°|°gy Language) Rules Trust — Well-defined model theory
— An ontology language for the Semantic Web o
W3C standard H Known computational complexity
— Based on Description Logic - S — %" ° FACT inference algorithm
— RDF/XML syntax e RDF" °:f:°°a il — Prove subsumption
+ T¢ iema o
o OWL 1.1 and 2 — Prove disjointness
— Extend OWL Further reading (not required reading):
. Jinfiged Horrocks, lan. (1997) Optimising tableaux decision procedures for
— Modify syntax . Descriptio(n Log)icsp, and mgny papers on-line P —
e L) Baader, F., Calvanese, D., McGuiness, D., Nardi, D., and Patel-Schneider, ®
KMM ontology Lecture 3/ 4 Ll] P. Description Logic Handbook (Chapter 2) |
1 2

Description Logic Description Logic Terminology

A Classifier (a reasoning engine) can be used to _—n . .
construct the class hierarchy from the definitions of Desc(;‘:er;itlll?tri\ol;‘%glcs separate assertions and concept

individual concepts in the ontology

Concept definitions are composed from primitive
elements and so the ontology is more maintainable

e A Box: Assertions
— E.g. hasChild(john, mary)
— This is the knowledge base

1 (we will not look at this aspect)
Mand Person e T Box: Terminology
' Aunt=d, Mo Woman — The definitions of concepts in the ontology
] I — Example axioms for definitions
Uncle =d; Uncle Aunt » CED [Cis asubclass of D, D subsumes C]
Woman = d, ~ » C=D [Cis defined by the expression D]
1

Personmd;

e ® ®
KMM ontology Lecture 3/4 Ll ' KMM ontology Lecture 3/4 Ll '
4

Description Logic Terminology

Important terminology:
e Concept: class, category or type (as introduced earlier)
e Role: binary relation
— Attributes are functional roles
® Subsumption:
— D subsumes C if C is a subclass of D
— i.e. AllCs are Ds
e Unfoldable terminologies:

— The defined concept does not occur in the defining
expression

— C =D where C does not occur in the expression D
e Language families

— AL: Attributive Language

— ALC adds full negation to AL

e ®
KMM ontology Lecture 3/ 4 Ll '

Description Logic

Language elements for terminological axioms:
C = D ‘is defined by’ C is equivalent to D

C E D ‘is subsumed by’ C is subsumed by/is a subclass of D
Terminological axioms make assertions about concept expressions.
Grammar for terminological axioms:

C=D|CED
The cases of most interest are where CN is given a
‘necessary and sufficient definition’: CN= D

And where CN is given a
‘necessary definition’: CN E D

Description Logic

Language elements for concept expressions:

1 ‘Bottom’ the empty set

‘Top’ the universal set

Concept name

Concept expression

Role expressions, limited to RN Role Names

‘Not’ forms the complement of a concept

‘Union’ forms the union (OR) of two concepts
‘Intersection’ forms the intersection (AND) of two concepts
‘Value restriction’

‘Exists restriction’

GrammarforC: L | T|CN|-C| CuD|CnD|VR.C| 3R.C

4 000
W< 3JLC Z—|

KMM ontology Lecture 3/4 L1 l
6

Description Logic ALC

CN, DN Atomic concept Sets CN, DN

1 Bottom Empty set

T Universal concept, Top Universal set

-C Full Negation Complement of C
cub Union Union of C and D
cnp Intersection Intersection of C and D
VR.C Value restriction The set {x| Vy R(x, y) = yEC}
JR.C Full existential restriction | The set {x| 3y R(x, y)a yEC}

Terminological axioms: Inclusions and equalities
Concepts: CcDandC=D

Roles: RESandR =S

e ®
KMM ontology Lecture 3/ 4 Ll '

Description Logic ALC

Description Logic ALC

Example concept expressions:

. . ALC Model Theory: (wff)'={...a set...}; R'is a set={<d,r>,...}
Parent = “Persons who have (amongst other things) some children”

. CN', DN! Atomic concepts Non-empty sets CN!, DN'C A!
Person n 3hasChild. T
1! Bottom ¢
ParentOfBoys = “Persons who have some children, and only have T! !I.Jgivefsa' concept, Al
children that are male” o - ﬁ - o
Person n (3hasChild. T) n (VhasChild.Male) o ull Negation
(Cuby Union clup
ScottishParent = “Persons who only have children that drink (cnoy Intersection cnp
(amongst other things) some IrnBru” . — . . .
Person 1 (YhasChild. (3drink.IrnBru)) (VR.C) Value restriction {x EA'| Vy <x,y> €ER! = yeCl}
(ArR.C)! Full existential {xEA'|Jy <x,y> ER' A yeC}
Each term (atomic or compound) defines a set as given by the right- restriction
hand column in the table
— The model theory makes this more formal Terminological axioms: Inclusions and equalities
T e ——— Concepts: CE D iff C'C D! T e
KMM ontology Lecture 3/ 4 Ll ' C=D iff C'=D' Ll '
9 10

Value and Exists Restrictions Value and Exists Restrictions

{a,b,c.d,e,f} are instances; Plant and Animal are classes {a,b,c.d,e,f} are instances; Plant and Animal are classes
Plant Animal Plant Animal
a eats d a eats d
\Q:ats \Q:ats
b N e b N e

Plantn Animal E L T E Plant U Animal Jeats.Animal = {c,d,e} VYeats.Animal = {a,b,c,e,f}
(disjointness) (partition) Jeats.Animal n Veats.Animal = {c,e}

e ® e ®
KMM ontology Lecture 3/4 Ll ' KMM ontology Lecture 3/4 Ll '
1" 12

Description Logic ALC

Model Theory
Aluniversal domain of individuals, let
A' ={a,b,c,d,e,f}

eats' set of pairs for the relation eats, let
eats' = {<d,a>,<d,e>,<e,d>,<e,f><c,f>}

Value and Exists Restrictions

{a,b,c.d,e,f} are instances; Plant and Animal are classes

For all concepts c: MeatEater = Veats. Animal = {a,b,c,e,f}

i) C'CAl Vegetarian= Veats. -Animal = {a,b,f}
ii)C'= ¢ Omnivore = Jeats. Animal = {c,d,e}
Let Animal' = {d,e,f}

Inference:

(_'An'mal)l ={a,b,c} So MeatEater subsumes Vegetarian
.. (Veats. Animal)' = {a,b,c,e,f} and Vegetarian is disjoint from Omnivore
(Eleats. Animal)' = {c,d,e} in this model, by these definitions
- BUT the problem is to prove properties
for ALL models

Plant Animal

a eats d

\\iﬁts
c eats ’./e

Vegetarian = {a,b,f} partition? MeatEater= {a,b,c,e,f}

e ®
KMM ontology Lecture 3/ 4 Ll '
13

ALC: Value Restriction

Value restriction: VR.C

R is a binary relation, e.g. eats(x, y)

C is a concept expression, e.g. Animal

Consider: Veats. Animal “things that eat only Animal”

defines the set x: Vy if eats(x, y) then y € Animal

In the formal model theory, where the domain is Al, eats is represented
by a set of tuples, e.g.

eats' = {<d,a>,<d,e>,<e,d><e,f><c,f>} meaning eats(d,a) eats(d,e)...
Animal ' = {d,e,f}

The set corresponding to Veats. Animal is:

{x € A!| Yy <x,y> € eats' = ye Animal'} = {a,b,c,e,f} F
In general, VR.C is interpreted as: F
{x € A!| Yy <x,y> € R = yeC'} $

eats(b,a) acAnimal' =

HT ==
HT a4

e ®
KMM ontology Lecture 3/ 4 Ll '
15

e ®
KMM ontology Lecture 3/ 4 Ll '
14

ALC: Existential Restriction

Existential restriction: 3R.C

R is a binary relation, e.g. eats(x, y)

C is a concept expression, e.g. Animal

Consider: Jeats. Animal “things that eat some Animal”

defines the set x: 3y eats(x, y) and y € Animal

In the formal model theory, where the domain is A!, eats is represented
by a set of tuples, e.g.

eats' = {<d,a>,<d,e>,<e,d>,<e,f><c,f>} meaning eats(d, a) eats(d, e)...
Animal' = {b,e}

The set corresponding to Jeats. Animal is:

{x € A'| Jy <x,y> € eats' A yE Animal'} = {c,d,e}

In general, 3R.C is interpreted as:

{x € A'| Iy <x,y> ER! A yeC}

e ®
KMM ontology Lecture 3/ 4 Ll '
16

-
°
A

@ Inference can expressed in terms of the model
— Satisfiability of C: C!is non-empty

— Subsumption CED iff C'C D' (“C is subsumed by D”)

— Equivalence C=D iff C'=D!
— Disjointness (CnD)E L iffC'ND'=¢

e Tractable/terminating inference algorithms exist

MeatEater = Veats. Animal

Vegetarian= Veats. -~Animal /' -]r\
Omnivore = Jeats. Animal MeatEater‘ Vegetarian ,Omnivore‘
Query: Answer: disjoint
a) Vegetarian E MeatEater " No
b) (MeatEater N Vegetarian)=E L No 1
c) (Omnivore N Vegetarian)E L Yes

KMM ontology Lecture 3/ 4 Li i

17

® The FACT tableaux method

— A tractable, extendable procedure

» extendable to more expressive DLs than ALC e.g. with

cardinality constraints and role expressions
— Assume an unfoldable terminology
» exclude: Human = JhasParent. Human

— Assume all definitions are necessary and sufficient =
— Proof is by unsatisfiability

» To show C and D are disjoint or in a subsumption
relation, a goal expression G is formed, and

» the aim is to reject G
e 4 steps:
— Steps 1-3 transform the goal into negation normal form
— Step 4 constructs a tableaux (a labelled tree)

- HA®

Inference has 2 equivalent notions - so implementing
one lets us prove all 4 properties
@ Reduction to subsumption c :
— Unsatisfiability of C: CE L
— Equivalence C=D iffCEDandDEC
— Disjointness (CnD)E L

@ Reduction to unsatisfability c'=¢:
— Subsumption C E D iff (C n -D) is unsatisfiable

— Equivalence C =D iff (Cn-D)and (Dn-C)are
unsatisfiable
— Disjointness (C n D) is unsatisfiable

[]
KMM ontology Lecture 3/ 4 Ll

1. Given two expressions C and D, replace all defined terms by

their definition, e.g. if C = E n F then replace C by EN F

= Continue until all defined terms are replaced (E and F may
be defined)

* Do this for C to get C' and D to get D’

2. Construct the goal G

= To show C and D are disjoint, G is C' M D’
= ToshowCED,GisC' N-D

3. Convert G to negation normal form using these equivalences:

aVR.A=3R.-A
"dR.A=VR. A
" (ANB) =~AU-B
7(AUB) =-AN-B
As aresult, the ‘not’ operator is pushed to the inner-most term
and only atomic concept expressions are negated

i
18

FACT Algorithm

4. Tableaux method - FACT algorithm (lan Horrocks) for ALC
o The tableaux is represented by a tree

® The tree is constructed from a root node, a0, whose label is
the goal G: L(a0) = {G}

e Nodes represent individuals (a0 and a1 in the figure below)

e Edges represent roles (relationships)

— Edges are labelled with role names

— If the edge <x,y> is labelled R then “y is an R successor of x”
® L(x)is the label of node x

— The individual x must be in the extension of every concept in L(x)
® The tree contains a clash if {C, -C} c L(x)

@0 {(Yr.Cc N D) N3r.~C}

.......

r Goal
{-C, C, D} rrnn Tree construction rules
e ®
KMM ontology Lecture 3/ 4 Ll '
21

FACT Algorithm

Tableaux method - summary of rules

1.
2.
3.

N -rule: (C N D) € L(x) then add C and D to L(x)

U -rule: (C U D) & L(x)then add C or D to L(x)

J-rule: 3R.C € L(x) then add L(<x,y>)=R (if it does not yet exist)
and C € L(y)

V-rule:vR.C L((g then IF there is some y s.t. L(<x,y>)=R and L(y)
does not contain C, add C to L(y)

A)Are Vegetarian and Omnivore
disjoint ?
{(Veats.7Animal) 1 (Jeats.Animal)} Apply 1 then 3 then 4.
1

@ {Veats."Animal, Jeats.Animal}

eats

s T
al {Animal "Animal }

e ®
KMM ontology Lecture 3/ 4 Ll '
23

FACT Algorithm

Tableaux method - rules that construct the tree
1. M-rule: (C N D)€ L(x) then add C and D to L(x)
@{cnp}y => G {C,0}
2. U -rule: (C U D) & L(x) then add C or D to L(x)
{cup} => (@ {C} OR {D}
3. J-rule: 3R.C € L(x) then add L(<x,y>)=R (if it does not yet exist) and C € L(y)
{EIR.C) add an edge R to a new node {C} (unless both exist already)
R

@{c}
4. V-rule:VR.C € L(x) then IF there is some y s.t. L(<x,y>)=R and L(y) does not
contain C, add C to L(y)

{VR.C} and if there is an edge labelled R

R
@{c

KMM ontology Lecture 3/4

.
N e

Description Logic

Are Vegetarian and Omnivore disjoint?
Vegetarian N Omnivore E L
Replace named classes by their definition:
Vegetarian = Veats.7Animal
Omnivore = Jeats.Animal
Construct goal: Veats.7Animal 1 Jeats.Animal
{Veats.7Animal n Jeats.Animal} [already in NNF]
@ {Veats.7Animal, Jeats.Animal} [a0:by N elimination split term in L(a0),
by 3 elimination add edge, and add
eats Animal to L(a1), L(a1)={Animal}]
[a0:by V elimination add =Animal to L(a1)]
{Animal, =Animal} Proven: tableaux shows a clash in L(a1)

e ®
KMM ontology Lecture 3/ 4 Ll '
24

Are Vegetarian and MeatEater disjoint?
Vegetarian N MeatEater E L
Replace named classes by their definition:
Vegetarian = Veats.7Animal
MeatEater = Veats.Animal
Construct goal: Veats.7Animal rn Yeats.Animal
{Veats.7Animal N Yeats.Animal} [already in NNF]
© {Veats.7Animal, Veats.Animal} [a0:by N elimination split term in L(a0)]

No more rules apply, therefore disjointness cannot be proven.

Note, V_e{imination cannot be applied unless an edge labelled eats already
exists.

e ®
KMM ontology Lecture 3/ 4 Ll '
25

Does Vegetarian subsume Omnivore?
Omnivore E Vegetarian
Omnivore N “"Vegetarian E L
Replace named classes by their definition:
Omnivore = Jeats.Animal
Vegetarian = Veats.7Animal
Construct goal: 3eats.Animal n ~Veats.7Animal
{Jeats.Animal N Jeats.Animal} [after conversion to NNF]
{Jeats.Animal, Jeats.Animal} [a0: by n elimination split term in L(a0),
by 3 elimination add edge, and add
eats Animal to L(a1), L(a1)={Animal}]

{Animal} no more rules apply, subsumption is not proven

Model:
A'={a0, a1}
eats' ={<a0,a1>}
Animal'={a1} e @
KMM ontology Lecture 3/ 4 ‘_l '
27

Does MeatEater subsume Vegetarian?
Vegetarian E MeatEater
Vegetarian N "MeatEater E L
Replace named classes by their definition:
Vegetarian = Veats.7Animal
MeatEater = Veats.Animal
Construct goal: Veats.7Animal N "Veats.Animal
{Veats.7Animal n Jeats. "Animal} [after conversion to NNF]
{Veats.7Animal, Jeats. "Animal} [a0: by N elimination split term in L(a0),
by 3 elimination add edge, and add

eats “Animal to L(a1), L(a1)={"Animal}]
[a0: V elimination would add =Animal to L(a1)]
{~Animal} no more rules apply, subsumption is not proven
®
KMM ontology Lecture 3/ 4 Li '

Show C and D are disjoint:

C=EVr~AnVrds.mB
D =3r.((Vs.B)UA)

[a0: Apply n elimination,
then 3 elimination to
create edge to a1.

Add ((Vs.B) U A) to L(a1).
Apply V elim. to remaining
a0 terms]

{ (Vr.AT Vr.3s.7B)[M @ r.((Vs.B) U A))}
{Vr.-A[NVr.3s.-B, 3 r.((Vs.B) LUA)}
{ Vr.-A, Vr.3s.7B, 3 }.(Vs.B) LU A)}

@) {-A, 3s.7B, ((Vs.B)[LIA)}
{-AEL-.-B, Vs.B} OR {-A, 3s.7B, A}

[a1: apply U elim., then by 3 elim.
add an edge labelled s to a2,

add B to L(a2). Clash immediately
closes tree for 2nd disjunct.

@¢-B,B}
clash closes tree for
1st disjunct

e ®
KMM ontology Lecture 3/ 4 Ll '
28

e Defining concepts:

— Value restrictions are often combined with appropriate
classes using intersection:

Vegan = Person [1 Veats.Plant

Vegetarian = Person I Veats.(Plant L Dairy)

Omnivore = Person I1 Jeats.Animal 1 Jeats.(Plant LI Dairy)
— Value restrictions may need an existential expression

» If we want to prevent people who don’t eat at all being
classified as Vegan:

Vegan = Person I Veats.Plant 1 Jeats.Plant
— Classes are not disjoint by default
» Explicit disjointness assertions are needed
— Forall does not imply some
Veats.Fish and Veats.7Fish are not necessarily
contradictory unless Jeats. T

i
29

More ‘Syntactic’ Proofs

Is there a model for: Veats.7Animal N Jeats.Animal ?

[Previously, the tableaux was shown to have a
clash]

e Apply the 7V equivalence rule:

Veats.7Animal N Jeats.Animal
~Jeats.Animal N1 Jeats.Animal

=PI P for P=3Jeats.Animal

There is no intersection between =P and P for any concept
expression P, and so the answer is no

e The tableaux construction rules can be modified to

detect such contradictions

e ®
KMM ontology Lecture 3/ 4 Ll '
31

Tableaux method can be extended:
e Transitive roles, e.g. part-of is a transitive relation

e Number restrictions, e.g.
ParentsWithThreeOrMoreChilden

General Terminologies
e CE . Diff(CN-D)=¢ forallmodelsIof T
e Add-CuD to all L(x) as a meta-constraint M

° C(;pe with non-terminating terminologies by a blocking
rule

— If the label occurs earlier in the tree then stop
— Human E JhasParent.Human
— node (a1) is blocked showing satisifiability

{Human,M} M = =Human Ll JhasParent.Human

{Human, 3 hasParent.Human,M}
hasPart;h\

{Human,M} ° L]
{Human, JhasParent.Human,M} cl '
BLOCKED - do not continue to extend the tree 30

Relationship to first-order logic (advanced topic)
¢ vre (X) = VY R(X, y) = ¢c(y) [for CN: Vy R(x, y) = CN(y)]
¢3rc (X) =AY R(X,y) A ¢cly) [for CN: Jy R(x, y) A CN(y)]

Modal Logics
o Necessity/All time/Knows /E

[oP), iff Yw r(v,w) = [P], oP adQ | <1 wi
< Possibility/Some time/Believes T

[OP], iff 3w r(v,w) a [P],, ey

DL and (multi) modal K have the same duality between operators

~VR.C = 3R.~C “0g P= O P
-3R.C = VR. ~C Qg P=0g P

e ®
KMM ontology Lecture 3/ 4 Ll '
32

Description Logics and their

properties

e ALC

— Sound and complete subsumption testing
e ALCN

— ALC + number restriction =nR
e ALCg,

— ALC + transitively closed roles
e SHIQ

— SH family: ALC + transitive roles and role hierarchy
e SHOQ(D)

— Adds datatypes (D) and enumerated types to SHIQ
e SHIF(D)

— Adds datatypes transitive roles and role hierarchy, plus

functional attributes to SHIQ (OWL-Lite)

e SHOIN(D)

— Adds nominals to class descriptions (oneOf {a,b,c}) and
arbitrary cardinality constraints (OWL-DL)

OWL Object Properties

OWL makes a distinction between Object types and Datatypes
Object types and Object properties are the same as in ALC

CN, DN Atomic concepts Non-empty sets CN', DN'C A!
At owl:Nothing ¢
T! owl:Thing A
(-C)' Full Negation A\ C!
(cupy Union c'uD!
(cnoy Intersection c'np!
(VYR.C) Value restriction {x € A'| Vy <x,y> €R! = yeC'}
(3Rr.c) Full existential {x € A'| Iy <x,y> ER' A yeCl}
quantification

Terminological axioms: Inclusions and equalities
Concepts: CCDiffC'C D!
C =D iff C'=D'

[]
KMM ontology Lecture 3/4 Ll

-8\ J

Web Ontology Language: OWL

Web Ontology Language (OWL) is W3C Recommendation
for an ontology language for the web

— Has an XML syntax
OWL is layered on RDF and RDFS (other W3C standards)
— Conforms to the RDF/RDFS semantics
— OWL has 3 versions:

» OWL-Lite - the simpler OWL DL

» OWL-DL - more expressive DL

» OWL-Full - not confined to DL, closer to FOL
— OWL DLs extend ALC

» Allow instances to be represented (A Box)

» Provides datatypes

» Provides number restrictions

e OWL 1.1 and 2 extend OWL DL

KMM ontology Lecture 3/4

OWL Datatypes

e Datatypes A'j are distinct from Object types A

A datatype relation U, e.g. age, relates an object type, e.g. Person to
an integer

» dage.Integer [the set of things that have some Integer as age]
Data types correspond to XML Schema types

OVIVL also provides hasValue: U:v to represent specific datatype
values

» age:29 [the set of things age 29]
D Data Range D'C Ay
(YUu.D)! Value restriction {x € A!| Yy <x,y> € U' = yeD'}
(3u.D)! Full existential {x € A'| Iy <x,y> € U' A yeD}
quantification

lan Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen.
From SHIQ and RDF to OWL: The making of a web ontology
language. J. of Web Semantics, 1(1):7-26, 2003.

Li- i

OWL Number Restrictions

e OWL adds (unqualifying) number restrictions to ALC
=2nR

— Defines the set of instances, x, for which there n
or more instances, y, such that R(x, y)

— BusyParent = = 3 hasChild

<nR

— Defines the set of instances, x, for which there n
or less instances, y, such that R(x, y)

Minimum I |
=znR cardinanty {xeA | #<xy>ER)=n}
<nR Maximum € A'| #(<x,y> ER!) £
cardinality x | #<xy)sn}
e ®
KMM ontology Lecture 3/ 4 Ll '
37

o Datatypes A';, and Object types A!

BN, CN Non-empty sets BN/, CN!C A!
D D'C Ay
(Buc) {x € A'| xEB'V xEC"
(Bncy {x € A'| xEB' A xEC"}
(VR.C)! {x EA'| Yy (<x,y> ER' = yeC')}
(ArR.C)' {x € A'| Ay <x,y> € R! A yeC}}
(VU.D)! {x EA| Vy (<x,y> € U' = yeD"}
(3u.n)' {x€A'| Iy <x,y> € U A yeD'}
KMM ontology Lecture 3/ 4 Li i
39

Disjointness axioms

Assume C and D are asserted to be disjoint in Protégé -
example of an axiom.

Q. Can anything be a subset of C and D?
Define a new class: TestClass =CnD
Goal:CnD

L(a0) ={C n D}

L(a0) = {C, D} no clash

Disjointness means: T E-Cu =D [equivalenttoCnNDE 1]
L(a0) ={C, D, °C u =D}

i. L(a0) = {C, D, °C} clash
ii. L(a0) = {C, D, 7D} clash

e ®
KMM ontology Lecture 3/ 4 Ll '
38

OWL-DL Cardinality

e Cardinality
BN, CN Non-empty sets BN/, CN!C A!
(VR.C)! {x € A'| Vy (<x,y> € R' = yeC)}
(ArR.C)! {x € A'| Iy <x,y> €R! A yeC}
(znR) {xEA|#<xy>ER)z2n}
(snR) {xXEA|#<xy>ER)<n}

hasWheel' = {<a0,a1> <a0,a2>} therefore:
=0 hasWheel; =1 hasWheel; =2hasWheel; and
< 2 hasWheel; <3 hasWheel

e ®
KMM ontology Lecture 3/ 4 Ll '
40

Bicycle = =2 hasWheel N =2 hasWheel
n VhasPart. "Engine

@ Unicyles would have 1 wheel, tricycles 3 wheels,
motorcycles would have 2 wheels and an Engine......

@ hasWheel is needed, rather than hasPart, as OWL-DL
cannot specify the type of the range to be Wheel

— Define hasWheel a subProperty of hasPart
—Range of hasWheel: Wheel

e An example of ‘bias’ being introduced because of the
expressivity of the representation

e ®
KMM ontology Lecture 3/ 4 Ll '
4

) RDF is a W3C standard, pre-dating OWL, for web semantics
o Identifies ‘things’ through URIs, and describes them in terms of
simple properties and property values
e The triple is the basic unit: <subject predicate object>
<http://www.example.org/index.html
http://purl.org/dc/elements/1.1/creator
http://www.example.org/staffid/85740>

® Subjects and objects are viewed as nodes in a graph, where
predicates label the edges
desere $2:85740
nsl:index.html:
dc:date “03/03/2004"

° In RDF, predicates represent relationships between resources

— But RDF provides no way to define these predicates, or state other
ontological properties

— RDF Schema addresses some of these problems

e ®
KMM ontology Lecture 3/ 4 Ll '
43

Domain and range specifications
domain(R,C):: =1 REC
Consider:
1) dhasChild.Male :anything with a male child

2)[Person| [AhasChild.Male :person with a male child:

The Person intersection in 2) is implicit in 1) if the
domain of hasChild is defined as Person

range(R,C):: T EVR.C

e ®
KMM ontology Lecture 3/ 4 Ll '
42

e RDFS allows subclasses and the domain and range of properties to be
defined (http://www.w3.org/TR/rdf-schemal)
— e.g. to state that creator has domain Document and range Person, two
triples are needed:
<dc:creator rdfs:domain ns:Document>
<dc:creator rdfs:range ns:Person>

rdf:Property the class of properties, an instance of rdfs:Class

rdfs:Resource the class of everything

rdfs:Literal the class of literal values e.g. string, integer
rdfs:Class the class of RDF classes

rdf:type the instance-of relation

rdfs:domain domain definition, an instance of rdf : Property
rdfs:range range definition, an instance of rdf: Property
rdfs:subClassOf subclass relation

rdfs:subPropertyOof subproperty relation

e There is no effective reasoning algorithm for RDFS
— hence, OWL

[]
KMM ontology Lecture 3/ 4 Ll

REAe

OWL Abstract Syntax

® The ALC-style syntax is not suitable for the WWW
® OWL needs to conform to the RDF/XML syntax

OWL/ALC DL Syntax OWL Abstract Syntax
(=C) Full Negation < complementOf C >
(cuD) Union < unionOf C D >
(cno) Intersection < intersectionOf C D >
Value restriction < Restriction
(VR.C) < onProperty R >
< allvaluesFrom C >>
Full exjstential < Restriction
(AR.C) quantification < onProperty R >
< someValuesFrom C >>
(cnp)=1 Disjoint concepts < disjoint € D >
CED Subclass of /subsumes < C <subClassOf D>>
Cc=D Equivalent <C <equivalentClass D>>
e ®
KMM ontology Lecture 3/ 4 ‘ l '
45

OWL in RDF/XML Syntax

CarEngine is equivalent to the intersection of Engine and VpartOf.Car :
CarEngine = Engine N VpartOf.Car

<owl:Class rdf:ID="CarEngine">
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType=“Collection”>
<owl:Class rdf:about=“#Engine”/>
<owl:Restriction>
<owl:onProperty rdf:resource=“&base;partOf”/>
<owl:allValuesFrom rdf:resource=“#Car”/>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>
</owl:equivalentClass>
</owl:Class>

Protégé reads and writes this syntax!

Use HP’s Jena toolkit in Java applications that need to read/write/
manipulate RDF/S or OWL.

KMM ontology Lecture 3/4

OWL in RDF/XML Syntax

Class definitions C E D and Property restrictions VR.C in RDF/XML syntax:

DieselEngine is a subclass of Engine: DieselEngine E Engine
<owl:Class rdf:ID ="DieselEngine">

<rdfs:subClassOf rdf:resource="&base;Engine"/>
</owl:Class>

CarPart is a subclass of the parts of the Car:
CarPart E VpartOf.Car

<owl:Class rdf:ID="CarPart">
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource=“&base;partof”/>
<owl:allValuesFrom rdf:resource=“#Car”/>
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>
<owl:Class> is used to specify the rdf:type
rdf:ID introduces new terms (compare with rdf:about to refer to terms)

&base; is a namespace (assumed to be defined)

defined locally
imported

[]
KMM ontology Lecture 3/4 Ll

OWL

b3
:-.‘ol

OWL:

e Is a web-compatible ontology language

e Syntax based on RDF/XML

e Semantics compatible with RDF and RDFS

® OWL-Lite and OWL-DL have a formal interpretation

based on DLs

e Extensive documentation at http://www.w3c.org
e Editing Tools
— Protégé 4

[]
KMM ontology Lecture 3/4 Ll

5 EAe

