Ontologies

Road map of next few lectures

KMM ontology Lecture 2

Ontologies

Reminder

- Application Ontologies
 - Describe specific domains
 - » Travel & Tourism; Medicine; Genetics
 - Can have diverse uses
 - » KBS (e.g. diagnosis); recommendation; web site / database design; data mining; NLP
- Knowledge Representation Ontologies
 - Define the formal vocabulary that specifies classes and relations
 - subClassOf; type
 - domain; range; subPropertyOf

- Symbolic representation of knowledge has a long history in Al lisp: (list `ant `bat `cat)
 - prolog: [ant, cat, bat]
 - mammal(X) :- cat(X).
- Ontologies establish standards and conventions for domain knowledge
 - Modelling: class, instance, relation
 - Content: objects vs processes,
 - Language: FOL, Description Logic
 - Definitional not problem solving knowledge

KMM ontology Lecture 2

Ontology Development Methodology

- Method 1
 - 'Methontology' see pdf files in <u>ontology-reading.tar.gz</u>
 Ontological Engineering. Gomez-Perez, A., Fernandez-Lopez, M., and Corcho, O. Springer 2004, pp.125-142
 - Building a chemical ontology. Fernandez-Lopez, M., Gomez-Peres, A. and Pazos Sierra, A. *IEEE Intelligent Systems* Jan/Feb 1999
 - Building legal ontologies. Corcho, O., Fernandez-Lopez, M., Gomez-Perez, A. and Lopez-Cima, A.
- Method 2

_

- Protégé Ontology Development 101. Noy, N. and McGuinness, D.
- Stanford Technical Report
- Method 3
 - Ontology design patterns

Methontology

Emphasises

- Ontology building as a craft
 - » Considering Domain Ontologies cf KR or Generic Ontologies
- Lack of tested and generalised methodologies
- The developers move too quickly to implementation
 - » Conceptual models get encoded in the implementation and not made explicit
 - » Ontological commitments not made explicit
 - » Experts are unable to critique formal ontologies
 - » The ontology encoding language imposes a bias on what *can* be said, so developers do not consider what *ought* to be said

Methontology

- The answer to build ontologies at the 'knowledge level', that is, at a level of abstraction above the encoding language
 - An encoding language might be FOL or Description Logic, Prolog, or Java
 - Recommend the use of intermediate abstractions,
 e.g. tables and diagrams, to capture the objects in the domain and the relationships between them
- Methontology identifies the steps in the process
 - Described as a life-cycle of evolving prototypes
 - Beginning with knowledge acquisition and
 - ending with a formal ontology

KMM ontology Lecture 2

KMM ontology Lecture 2

Methontology

The ontology evolves from a series of prototypes

- Cyclical process
- The ontology development process describes the activities to be performed during ontology engineering
- Lifecycle of development activities
 - Specification: identify uses and users
 - Conceptualisation: structures the domain knowledge
 - Formalisation: transforms conceptual model into a formal model
 - Implementation: build the computable model
 - Maintenance: updates and corrects the ontology
- Support activities
 - Knowledge acquisition
 - » Predominantly at the beginning
 - Integration/Merging/Alignment
 - » Bring in existing ontologies
 - Evaluation

_

- » Determine that modelling decisions are correct
- Documentation

- The Specification describes the
 - Primary objective
 - Purpose
 - Granularity level
- Scope
- Conceptualisation
 - Organise the acquired knowledge
 - Represent it in a way both domain expert and ontologist can understand
 - » Intermediate representation diagrams and tables

KMM ontology Lecture 2

» 11 steps that can be performed iteratively

Methontology: Example

The chemical elements ontology, including all 103 elements and their properties. [Fernandez-Lopez]

KMM ontology Lecture 2

Methontology: Example

The chemical elements ontology, including all 103 elements and their properties.

- The Specification describes the
 - Primary objective
 - » Build a reusable resource
 - Purpose
 - » To be used when information about chemical elements is required in teaching, manufacturing etc
 - Granularity level
 - » Elements, not compounds or sub-atomic particles
 - Scope
 - » Cover the 103 elements, atomic no. and weight, electronegativity and melting point
- Knowledge acquisition
 - Preliminary meetings with experts to gain an overview
 - Study documents for familiarisation
 - KA with experts: (non)structured interviews; text analysis; reviews of intermediate representations

Methontology: Example

The chemical elements ontology

- 1. Build the Glossary of terms
 - Consider anything relevant including concepts, instances, attributes, verbs
- 2. Build the Concept taxonomy
 - Organise the terms that represent concepts (i.e. classes or sets) into a concept hierarchy, distinguish:
 - subClassOf
 - Disjoint decomposition subclasses are disjoint
 - Exhaustive decomposition subclasses cover concept
 - Partition exhaustive and disjoint
- 3. Build the Binary relations diagram
- 4. Build the Concept dictionary: Tabulate Concept-Name, Synonym, Instances, Class-Attributes, Instance Attributes, and other Relations

Methontology: Example

10

1. Build the Glossary of terms, define each in natural language

carbon, hydrogen, element, gas, metal, conductor...

2. Build the Concept taxonomy:

Element Reactiveness	Categorisation by reactivity	has-structure/		
Metal Third transition series		is-in-eler	nent Crystalline	
			structure	

3. Build the Binary relations diagram

4. Build the Concept dictionary

Concept Name	Synonym	Acronym	Instances	Class Attributes	Instance Attributes	Relations
Element		Elm.			atomic-number atomic-weight	has- structure
Third transition series	Sixth- period transition series	3TS	Gold Hafnium Mercury			

Methontology

Concept dictionary in more detail:

- Concept-Name
 - A unique (singular) name for the concept
 - In certain cases identifiers are used GO:000999
- Synonyms
 - Alternative names for the concept
- Instances
 - Elements of the set represented by the concept
- Relations
 - Relations between (instances of) classes
 - E.g. departurePlace(<instance of Flight> <instance of Location>)
- [Class-Attributes
 - Attributes that hold of the class
- Included here for completeness only
- E.g. companyName(KLM-Flight "KLM")
 but arguably class attributes should hold of all instances of the class!]
- Instance Attributes
 - Attributes that can be specified for each instance
 - E.g. weight(<instance of Person> <weight-in-kg>)

13

Methontology

Methontology

KMM ontology Lecture 2

Methontology: Example 2

A legal ontology for Spanish law [Corcho]

- 1. Build the Glossary of terms, define each in natural language defendant, court, person, private company,...
- 2. Build the Concept taxonomy:
 - LegalEntity JuridicialPerson Company [exhaustive decomposition] PrivateCompany PublicCompany
 - PhysicalPerson [partitioned into]
 - Juvenile
 - PersonLegallyOfAge
- 3. Build the Binary relations diagram
- Build the Concept dictionary

Methontology: Example 2

1. Glossary of terms

- Types are: concept, constant, relation, instance attribute

Name	Synonyms	Acronyms	Description	Туре	
Adult age in Spain			Adult age is 18	constant	
Court	Judicial tribunal		Although court can be understood as a physical	concept	
	Judicial:	of or by or judge	place or as a judge, we assume that a court is a judicial tribunal		
Birthday		- J	The day when a person was born	instance attribute	
ls-defendant (person,lawsuit)			Identifies the lawsuit a defendant is involved in	relation	

KMM ontology Lecture 2

Methontology: Example 2

2. Concept taxonomy: subclasses; partitions; disjoint and exhaustive decompositions

Methontology: Example 2

Í

- 3. Binary relations diagram
 - Ad-hoc relationships between concepts
 - Determine domains and ranges

4. Concept dictionary

- Organise all concepts and relations in 2. and 3.

- Rows list relations/attributes whose domain is the Concept

Concept Name	Syno- nym	Acro- ynym	Instances	Class Attrib- utes	Instance Attributes	Relations
Court			Constitutional Court National Court		number of members seat	hears
Lawsuit						has-defendant has-plaintiff is-heard
Person						is-defendant is-plaintiff
Physical Person					age birthday	is-mother-of has-mother is-father-of

Methontology: Example 2

5. Binary relations table

 Describe all the binary relations in the Concept Dictionary (4.)

Relation Name	Source concept (Domain)	Cardinality	Target concept (Range)	Inverse relation
is- defendant	Person	N	Lawsuit	has-defendant
is-plaintiff	Person	N	Lawsuit	has-plaintiff
has- defendant	Lawsuit	N	Person	is-defendant
is-heard	Lawsuit	N	Court	heard

KMM ontology Lecture 2

Methontology: Example 2

8. Constants table - describe the constants in the Glossary (1.)

Name	Value type	Value	Measurement unit
Adult age in Spain	cardinal	18	year

9. Instances table - describe the instances in the Concept dictionary (4.)

Instance Name	Concept Name	Instance Attribute	Values
National Court	Court	seat territorial- jurisdiction	Madrid Spain

Methontology: Example 2

6. Instance attributes table

attributes for instances of concepts (values differ for each instance)

Instance Attribute Name	Domain Concept	Value type	Value range	Cardinality (min,max)
number-of- members	Court	Integer	1	(1,1)
territorial- jurisdiction	Court	String		(1,1)

7. Class attributes table - attributes applicable to the class (values apply to the class name)

Class Attribute Name	Concept	Value type	Cardinality (min,max)	Values
type-of-control	Private Company	[private,public]	(1,2)	private
type-of-control	Public Company	[private,public]	(1,2)	public

KMM ontology Lecture 2

Methontology: Example 2

- **10. Formula table (Chemical Elements ontology)**
 - Formula name e.g. Density
 - Attribute e.g. density-at-20C
 - Description e.g. density is equal to atomic weight divided by atomic volume
 - Expression e.g. density-at-20C = atomic-weight / atomic-volume

11. Axioms table

- Axiom name e.g. incompatibility of plaintiff
- Description e.g. a Person cannot be plaintiff and defendant in the same Lawsuit
- Expression ...

Recall the axioms for properties of relations

Ontological modelling - Relations

Relations and their properties

part-of(a, b)^ part-of(b, c)
\Rightarrow part-of(a, c)
a a n n a a t a (a, b)
\Leftrightarrow connected-to(a, b)
<i></i>
part-of(a, a)
¬hasMother(a, a)
hasMother
hasMother(a, b) ⇔ motherOf(b, a)

KMM ontology Lecture 2

ConsumableThing

Region

Vintage
VintageYear

- 😑 Wine = Wine

🔻 😑 Bordeaux

🛉 🕘 Burgundy

Medoc
RedBordeaux

NonConsumableThing

😑 AlsatianWine

AmericanWine
Beaujolais

Sauterne

StEmilion

RedBurgundy

WhiteBordeaux

Method 1: Methontology

- A structured methodology based around intermediate representations
 - 1. Glossary of terms
 - 2. Concept taxonomy
 - 3. Binary relations diagram
 - 4. Concept dictionary
 - 5. Binary relations table
 - 6. Instance attributes table
 - 7. Class attributes table
 - 8. Constants table
 - 9. Instances table
 - 10. Formula table
 - 11. Axioms table

KMM ontology Lecture 2

Method 2: Protégé

Active Ontology Entities Classes Object Properties	5 Data Properties	Individuals	OWLViz	DL Query		
Object Properties: hasWineDescriptor	Annotations: hasW	fineDescriptor				
hasFood hasMaker hasVintageYear hasWineDescriptor hasBody	Annotations Object	Property Usage				
 hasColor hasFlavor hasSugar locatedIn madeFromFruit madeFromGrape madeIntoWine 	Characte [] = 0 (0) Functional Inverse func Transitive Symmetric	Description: ha Equivalent object Super properties	asWineDescr t properties (••••••••••••••••••••••••••••••••••••	ip1088	Domains and ranges: hasWin Domains (intersection) • • • • • • • • • • • • • • • • • • •	
un produceswine	Antisymmet	Disjoint propertie	es 🗗 ———		whiebeschptor	80

KMM ontology Lecture 2

Method 2: Protégé

Protégé

- Established, general purpose tool for ontology building
- Install Protégé 4.1 (beta)
 - » http://protege.stanford.edu
 - » Download installer for linux
 - » [dice]:sh install_protege_4.1.bin
 - » [dice]: ./run.sh
 - » (update the reasoners when prompted)
- Required reading: Ontology Development 101. Noy, N. and McGuinnes, D. Stanford Technical Report (L2-Noy.pdf)

Method 2: Protégé

Some development guidelines:

- 1. Determine the domain and scope of the ontology _
- **Competency questions** 2. Consider reusing existing ontologies
- 3. Enumerate important terms in the ontology
- 4. Define classes and the class hierarchy
 - _
 - Bottom-up
 - Top-down
- 5. Define the properties of classes (slots=attributes or relations)
- 6. Define facets of slots
 - Domain and range _
 - Cardinality

Logical partition:

type(y, ChildValue)

Define Adult:

type(x, Adult) ::

Content pattern:

Ordering

=> not(type(y, AdultValue))

type(x, Person) and hasAge(x,y)

and type(y, AdultValue)

Slot value type: string, number, boolean, enumerated, instance (of Classes)

Method 3: Ontology design

patterns

precedes

isPrecededBy

Paying

KMM ontology Lecture 2

AgeGroupValue

isPrecededBy

KMM ontology Lecture 2

ToddlerValue

InfantValue

AdultValue

ChildValue

Value partition

precedes

Eating

Method 2: Protégé

7. Create instances

- 8. Ensure the class hierarchy is correct
 - no cycles _
 - subClassOf is transitive
- 9. Classes represent concepts NOT the words that denote the concepts
 - Synonyms are not different classes
 - Shrimps=Prawns
- 10. Too many siblings may indicate an intermediate class is needed
- 11. Multiple inheritance is allowed
- 12. Class or property value?
 - White-Wine or Wine & colour=White
- 13. Instance or class?
- 14. Singular or plural names for classes?

KMM ontology Lecture 2

Methodology

From this lecture, note:

- Methontology
 - Specification criteria
 - Conceptualisation process
 - » Use of intermediate representations
 - » Main steps (1-4) in some detail
 - » The remainder in outline
- Protégé
 - Explore use with the example ontologies:
 - family.owl cows.owl and simple-pizza.owl

