
1

Knowledge Modelling and
Management

Part B (4)

YunYun--Heh ChenHeh Chen--BurgerBurger
http://www.aiai.ed.ac.uk/~jessicac/project/KMMhttp://www.aiai.ed.ac.uk/~jessicac/project/KMM

2

Data/Domain Modelling and
Knowledge Representation

3

Knowledge Modelling
 in CommonKADS

Contains data and knowledge analysis and structures;
Support Reasoning task;
Has three type of knowledge (knowledge category):

– Domain knowledge;
– Inference knowledge;
– Task knowledge.

Does not consider implementation-related issues (left for
design phase):

– Even when one talks about “rules”, we mean natural rules and
not the actual coding/shape/forms of rules that may be used in a

 knowledge system.
Domain knowledge includes concepts, but it does not
includes functions (methods);
Knowledge may be described using both graphical as
well as textual notations.

4

Domain Knowledge
Domain schema:

– A schematic description of the domain knowledge through a number

of type
definitions.

– Its function is similar to a data model (ER), object model (OO),

class diagram (UML),
or an (un-populated) ontology.

Knowledge base:
– Contains instances of types specified in a domain schema,
– Similar to a database,
– May use different knowledge bases to store different types of knowledge.

Some characteristics of a knowledge system:
– Has rules;
– Support logic based inference:
– May propose hypothesises and verify them;
– May hold worlds of different believes at the same time;
– May derive and store “uncertain”

information that may be over-written at a later
time;

– May backtrack to produces different plausible believes of the systems or to seek
alternative solutions for a problem;

– May carry out proofs for a statement;
– Applications:

» Derivative: may derive what “may/must have happened in the past”;
» Predictive: may infer what may/must happen next;
» Provides decision-making support.

5

Example: Loan Application

A piece of data
– Name of a person

A piece of information
– Applicant to a loan

A piece of knowledge
– Credit rating and risk assessment for loans
– Knowledge may be grouped via

» Personal financial history in terms of
repayment

» Personal income
» Any other existing loans?
» Personal spending behaviours: pay by card,

cash, overdraft, any credit card debt?
» Relation to the bank, existing customers?

For how long?
» Different types of loans on offer and their

own risk assessment mechanisms

6

Person

Age
Income

Loan

Amount
Interest

has-loan

John has a loan of $1,750.
Harry has a loan of $2,500.

Information

Knowledge
A person with a loan should be at least 18 years old.
A person with an income up to £10,000 can get a maximum loan of £2,000.
A person with an income between $10,000 and £20,000 can get a maximum loan of £3000.

Single flat knowledge base

Rule 1: If.. Then…
Rule 2: If.. Then…
Rule 3: If.. Then…

Rule n: If.. Then…

…

Rule set of type A

Rule set of type B

Rule set of type C

Rule set of type N

…

Organised multiple rule sets

Domain Modelling and
Knowledge Representation

Has-loan(john, 1750).
Has-loan(harry, 2500).

Facts

Axioms

7

Example Rules
 (Forward Chaining Rules)

•

A person with a loan should be at least 18 years old.
•

A person with an (annual) income up to £10,000 can get a maximum
loan of £2,000.

•

A person with an (annual) income between £10,000 and £20,000 can
get a maximum loan of £3000.

Qualification process:
qualifyForLoan(Person) ← age(Person, X) ∧

greaterEqual(X, 18)

Deciding on loan size:
maxLoanSize(Person, 2000) ← hasIncome(Person, X) ∧

 lessEqual(X, 10000) ∧

qualifyForLoan(Person)

maxLoanSize(Person, 3000) ← hasIncome(Person, X) ∧
 greaterEqual(X, 10000) ∧

lessEqual(X, 20000) ∧

 qualifyForLoan(Person)

8

Specify domain knowledge using
UML Class Diagram

Main modelling primitives:
– Class;
– Attribute and

value-types

(e.g. boolean, real number,

integer, natural number, numerical range, text, string,
set of symbols, date, universal.);

– Relationships: association, generalisation, aggregation,
composition;

– Cardinality/multiplicity: cardinality, mini-cardinality,
max-cardinality; default 1-1;

– Axioms.

Recommended naming style of classes: noun,
noun phrase.
Recall the naming style of processes which may
incorporate a class’ name.

9

An UML Class Diagram

Cardinality/Multiplicity

Note:
1. Methods as well as properties are included.
2. One relation is represented in a class here.

10

UML Class Diagram used to
Express Inheritance

11

Sub-type and

Differentiae

The properties, features or attributes that are used to
distinguish/group a type of instances from other types
of instances thus to have a common super-type.
This term comes from Aristotle's method of defining
new types by stating the genus or super-type and
stating the differentiae that distinguish the new type
from its super-type.
Aristotle's method of definition has become the de
facto standard for natural language dictionaries, and it
is also widely used for AI knowledge bases and object-
oriented programming languages.

12

Ontology
 Demote Classes into Hierarchy

Thing

Person

Value-type

Male

Female

Citizen

Foreigner

Student

Undergrad Student

Masters Student

PHD Student

Employee
Professor

Registrar

Associate
Professor

Tenured Professor

Nationality

Gender

has-gender
has-nationality

1. Check Ontology hierarchy with application domain, 2. Prioritise Differentiae in the domain.

13

UML Class Diagram used to
Express Inheritance

Employment function

Employee contract
and position

14

Clarify Concepts in non-
 disjointed classes

Thing

Person

Value-type

Male

Female

Citizen

Foreigner

Student

Undergrad Student

Masters Student

PHD Student

Employee

Professor

Registrar

Non-Tenured
Professor

Tenured Professor

Nationality

Gender

has-gender
has-nationality

Two differentia have been used and one can be extracted and used

alone to provide a clearer division of types.
In this case, to represent the contractual status of a professor. The information of the types of Professor is lost.

15

Specify Contract Properties

Extract the contractual type in a different category while preserving the type information of professors.

Thing

Person

Value-type

Male

Female

Citizen

Foreigner

Student

Undergrad Student

Masters Student

PHD Student

Employee

Faculty

Registrar
Associate Professor

Full Professor

Nationality

Gender

TenureEmployment
Contract

Type Fixed-term contract

has-gender

has-nationality

has-contract

∀X. full_professor(X)→Tenure(X)

16

Compare UML with Ontology

constraints on domain(informal) Rule, (UML object
constraint language)

relationship: (part-of, has-part)association: (aggregation,
composition)

cardinality of relationshipcardinality of association

Inference rule/axiom(informal) Rule, (UML object
constraint language)

constraints on range(informal) Rule, (UML object
constraint language)

instanceobject

Attributeattribute

(no exact counter part)method, operation, function

subclass, subtypegeneralisation
concept; classclass (without method)
OntologyUML Class Diagram

17

Compare UML with OWL

18

Ontology –

1
The subject of ontology is the study of the categories of things that
exist or may exist in some domain.
The product of such a study, called an ontology, is a catalogue of
the types of things that are assumed to exist in a domain of interest
D from the perspective of a person who uses a language L for the
purpose of talking about D.
The types in the ontology represent the predicates, word senses, or
concept and relation types of the language L when used to discuss
topics in the domain D.
An un-interpreted logic, such as predicate calculus, conceptual
graphs, or KIF, is ontologically neutral. It imposes no constraints
on the subject matter or the way the subject may be characterized.
By itself, logic says nothing about anything, but the combination of
logic with an ontology provides a language that can express
relationships about the entities in the domain of interest.

19

Ontology -

2
An informal ontology may be specified by a catalogue of types that
are either undefined or defined only by statements in a natural
language.
A formal ontology is specified by a collection of names for concept
and relation types organized in a partial ordering by the type-
subtype relation. Formal ontologies are further distinguished by
the way the subtypes are distinguished from their super-types.
An axiomatized ontology distinguishes subtypes by axioms and
definitions stated in a formal language, such as logic or some
computer-oriented notation that can be translated to logic.
A prototype-based ontology distinguishes subtypes by a
comparison with a typical member or prototype for each subtype.
Large ontologies often use a mixture of definitional methods:

– formal axioms

and definitions are used for the terms in mathematics,
physics, and engineering; and

– prototypes

are used for plants, animals, and common household items.
Source: John Sowa [12]

http://www.jfsowa.com/ontology/gloss.htm#Axiomatized
http://www.jfsowa.com/ontology/gloss.htm#Prototype

20

Ontology -

3
In the context of knowledge sharing, I use the term ontology to mean
a specification of a conceptualization. That is, an ontology is a
description (like a formal specification of a program) of the concepts
and relationships that can exist for an agent or a community of
agents. This definition is consistent with the usage of ontology as set-
of-concept-definitions, but more general. And it is certainly a
different sense of the word than its use in philosophy.
What is important is what an ontology is for. My colleagues and I
have been designing ontologies for the purpose of enabling knowledge
sharing and reuse. In that context, an ontology is a specification used
for making ontological commitments. The formal definition of
ontological commitment is given below. For pragmatic reasons, we
choose to write an ontology as a set of definitions of formal
vocabulary. Although this isn't the only way to specify a
conceptualization, it has some nice properties for knowledge sharing
among AI software (e.g., semantics independent of reader and
context). Practically, an ontological commitment is an agreement to
use a vocabulary (i.e., ask queries and make assertions) in a way that
is consistent (but not complete) with respect to the theory specified by
an ontology. We build agents that commit to ontologies. We design
ontologies so we can share knowledge with and among these agents.

21

UML Class Diagram

Object-Oriented approach;
Used as a conceptual modelling method
– not implementation dependent;
Typically used at a software system
design phrase that extends/adapts the
conceptual model;
Typically not (mainly) used to describe
the categories of things;
Typically not used to provide definitions
for terminologies.

22

Representing a Domain Model

23

Representing a Domain Model

Person Student

Undergrad Student

Masters Student

PHD Student

Representing classes:
class(person).
class(student).
class(undergrad_student).

Representing (class) relationships:
subClassOf(student, person).
subClassOf(undergrad_student, student).
subClassOf(masters_student, student).

Defining instance attributes:
domainOf(address, person).
rangeOf(address, string).
rangeOf(DoB, date).
rangeOf(color, {blue, red}).

Person
Full Name: String
Address: String

Address

Domain

Range String

Person

Representing instances:
instanceOf(john, masters_student).
instanceOf(mary, phd_student).

Representing instance attribute values:
address(john, ‘Edinburgh’).
address(mary, ‘Glasgow’).

DoB: Date

24

Knowledge Representation
Convention

Representing a class:
– class(Class). (alternatively, use type(Class).)

Relationships between classes:
– Relation_name(Class1, Class2).

Instances:
– instanceOf(Instance, Class).

Defining the property for instances:
– domainOf(Property_name, Domain_type).
– rangeOf(Property_name, Range_type).

Property values of an instance:
– Property_name(Instance, Value).

Axiom: P → Q
– Q :-

P.

25

A Well-Formed Formulae in
FOPL -

1

1.

A constant

can be any number or any
unbroken sequence of lower-cased symbols.

2.

A variable is any unbroken sequence of
symbols beginning with an upper case letter.

3.

A predicate

is a term consisting of a functor
(predicate name), and an ordered set of 0 or
more arguments. F(A1

,…An

).
4.

Predicate name must be a constant.

5.

An argument

(of a predicate) may either be a
constant or variable.

26

A Well-Formed Formulae in
FOPL -

2

6.

If P and Q are formulae, then the following are also
formulae:
• ¬ P
• ¬ Q
• P ∧

Q

• P ∨

Q
• P → Q
• P ↔ Q

7.

Only expressions using rules 1 to 6 are formulae.
8.

If P is a well-formed term, then ∀X.P and ∃X.P are
terms quantified over X. Any variables not quantified
using either ∀

or ∃

are free variables

in P.

9.

A sentence

does not contain free variables.

27

Representing Logic
 Sentences -

1

• ¬ P (negation)

• \+ P.

• P ∧ Q (conjunction)

• P, Q.

• P ∨ Q (disjunction)

• P ; Q.
• P → Q (implication)

• Q :-

P.
• P ↔ Q (double implication)

• R :-

P, Q.
• P :-

Q.

• Q :-

P.

Person Student

Undergrad Student

Masters Student

PHD Student

Class Relation: Relation(Class1, Class2)

subClassOf(student, person).

If an individual is a member of a particular
class, then it is automatically an instance of
its superclass:

∀X. instanceOf(X, student)
→ instanceOf(X, person)

Prolog sentence:

instanceOf(X, person) :-
instanceOf(X, student).

28

Representing Logic
 Sentences -

2

¬ P
– \+ P.

P ∧ Q
– P, Q.

P ∨ Q
– P ; Q.

P → Q
– Q :-

P.

P ↔ Q
– R :-

P, Q.

– Q :-

P.
– P :-

Q.

Person Student

Undergrad Student

Masters Student

PHD Student

Class Properties: Property(Class1, Class2)

disjointness assertions:

disjointWith(undergrad_student, masters_student).
disjointWith(masters_student, phd_student).
disjointWith(undergrad_student, phd_student).

It states that an individual that is a member
of one class cannot simultaneously be an instance of a
specified other class. Therefore a violation rule in Prolog:

violation(disjoint, Instance, Class1, Class2) :-
disjointWith(Class1, Class2),
instanceOf(Instance, Class1),
instanceOf(Instance, Class2).

29

Deriving interesting properties using
subClassOf Relation-

1

Knowledge Base:

subClassOf(undergrad_student, student).
subClassOf(masters_student, student).
subClassOf(phd_student, student).
subClassOf(registrar, employee).
subClassOf(professor, employee).

Query (1): what are the different types of students?

all_student_types(X) :-

subClassOf(X, student).

| ?-

[student]. ← Load the program
| ?-

all_student_types(X). ← send the query

X = undergrad_student ? ; ← answers returned
X = masters_student ? ;
X = phd_student ? ;
No

30

Deriving interesting properties
- 2

• As the subClassOf relation often can be interpreted
as a “is-a”

relation, we can use this to answer the

below query:

Query (2): what (type) is X ?

what_is(X, Type) :-

subClassOf(X, Type).

| ?-

what_is(registrar, Type).
Type = employee ? ;
No.

31

Deriving interesting properties
- 3

Query (3): What are similar to X, i.e. in the same category of X

?

same_category(X, Y) : -

subClassOf(X, Category),
subClassOf(Y, Category),

\+ X = Y.

| ?-

same_category(registrar, Y).
Y = professor ? ;
no.

Combined queries of (2) and (3)…

What is a registrar and who are similar
to registrar?

| ?-

what_is(registrar, Type), same_category(registrar, Others).
Type = employee,
Others = professor ? ;
No.

32

Summary: Representing a
Conceptual Model in FOPL

Identify what are the information that you are trying
to represent. Do you need to differentiate
characteristics and use them to divide the domain in
the different models and thus your representations?
Identify what are the classes, instances, properties,
relationships, axioms, and typing information in
your model. Decide how you want to represent them.
Identify the desirable properties that you wish to
infer from your model. You may need to go back to
the representational issues on this.
Decide how you are going to derive those properties.
Decide how you may want to verify certain
properties, e.g. in the model or when receives an
enquiry about information stored in the model.

33

Summary:
 Concepts and Terminologies

Concept/Class:
– A concept describes a set of objects or instances which occur in

 the application domain and which share similar characteristics.
[p. 92, 1]

– Also sometimes refers to as:
» Type, Sort, Entity, Unary relation;
» Related to/originate from “set”.

Relationship/association:
– Examples: sub-class, sub-type, is-a, instance-of, inheritance.

Object: also called instance, occurrence, individual;
Process: also called activity, task, procedure.
Other concepts: disjoint decomposition, completeness
(exhaustive decomposition), partition (a non-overlapping
division of a set).

34

Main Reference

[1] (Chapter 5, 14, 13-13.2.3) in Knowledge
Engineering and Management: The
CommonKADS Methodology. Guus Schreiber,
Robert de Hoog, Hans Akkermans, Anjo
Anjewierden, Nigel Shadbolt, Walter Van de
Velde.

35

Additional Reference

[14a] Prolog program Library: student.pl:
http://www.aiai.ed.ac.uk/~jessicac/project/prolo
g/.

•

[1b] For understanding Prolog and Clausal
Logic: Peter Flach. Simply Logical: Intelligent
Reasoning by Example. Wiley Professional
Computing. 1994.

•

[2b] For understanding Prolog: Ian Bratko,
Prolog Programming for Artificial Intelligence
(2nd edition), Addison Wesley, 1986.

http://www.aiai.ed.ac.uk/~jessicac/project/prolog/
http://www.aiai.ed.ac.uk/~jessicac/project/prolog/

36

Other Reference
 (not examable)

[11a] OWL Overview: http://www.w3.org/TR/owl-
features/.
[12a] RDF: http://www.w3.org/RDF/.
[13a] RDFS: http://www.w3.org/TR/rdf-schema/.
[15a] OWL Reference:
http://www.w3.org/TR/2004/REC-owl-guide-
20040210/#DisjointClasses.
[16a] Yun-Heh Chen-Burger and Dave Robertson.
Automating Business Modelling. Book Series of
Advanced Information and Knowledge Processing,
Springer Ver-Lag, December 2004.
http://www.springeronline.com/sgw/cda/frontpage/0,11
855,5-40356-72-34527494-0,00.html.
[17a] Tom Gruber: What is an ontology?. http://www-
ksl.stanford.edu/kst/what-is-an-ontology.html.

http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/owl-features/
http://www.w3.org/RDF/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/2004/REC-owl-guide-20040210/#DisjointClasses
http://www.w3.org/TR/2004/REC-owl-guide-20040210/#DisjointClasses
http://www.springeronline.com/sgw/cda/frontpage/0,11855,5-40356-72-34527494-0,00.html
http://www.springeronline.com/sgw/cda/frontpage/0,11855,5-40356-72-34527494-0,00.html
http://www-ksl.stanford.edu/kst/what-is-an-ontology.html
http://www-ksl.stanford.edu/kst/what-is-an-ontology.html

37

Additional Information

38

What is UML OCL (Object
Constraint Language)

OCL is a small, text-based formal language for object
modelling, using only ASCII characters.

It can be used to describe pre- and post-conditions.

However, it is difficult to generate code automatically
from OCL because

– It is declarative and not imperative –

e.g. it tells you
that balance equals the total balance of an account, but
it does not tell you to add up or subtract transactions;

– It is a constraint language, and not an action language
–

it is much better to generate codes form an action

language, and not from a constraint language.

39

Why OCL ?

OCL is suitable to be used to generate
(automatic) verification and validation rules –
which can be used for constraint checking at
the model layer (i.e. checking class diagrams)
Roundtrip support for assertions.
Model Animation ("running" scenarios in the
tool).
Tool: Poseidon from Gentleware, or the
Boldsoft tools (now part of Borland) They
both support OCl, including code generation;
Rational Rose with EmPowerTecs add-in.

40

Partial Order and Total Order

41

Poset

	Slide Number 1
	Slide Number 2
	Knowledge Modelling�in CommonKADS
	Domain Knowledge
	Example: Loan Application
	Domain Modelling and Knowledge Representation
	Example Rules�(Forward Chaining Rules)
	Specify domain knowledge using UML Class Diagram
	An UML Class Diagram
	UML Class Diagram used to �Express Inheritance
	Sub-type and Differentiae
	Ontology�Demote Classes into Hierarchy
	Slide Number 13
	Clarify Concepts in non-disjointed classes
	Specify Contract Properties
	Compare UML with Ontology
	Compare UML with OWL
	Ontology – 1
	Ontology - 2
	Ontology - 3
	UML Class Diagram
	Representing a Domain Model
	Representing a Domain Model
	Knowledge Representation �Convention
	A Well-Formed Formulae in FOPL - 1
	A Well-Formed Formulae in FOPL - 2
	Representing Logic�Sentences - 1
	Representing Logic�Sentences - 2
	Deriving interesting properties using subClassOf Relation- 1
	Deriving interesting properties �- 2
	Deriving interesting properties �- 3
	Summary: Representing a Conceptual Model in FOPL
	Summary:�Concepts and Terminologies
	Main Reference
	Additional Reference
	Other Reference�(not examable)
	Additional Information
	What is UML OCL (Object Constraint Language)
	Why OCL ?
	Partial Order and Total Order
	Poset

