
Reasoning under Uncertainty
Probabilistic Reasoning

Fuzzy logic
Dempster-Shafer Theory

Summary

Knowledge Engineering
Semester 2, 2004-05

Michael Rovatsos
mrovatso@inf.ed.ac.uk

Lecture 8 – Dealing with Uncertainty
8th February 2005

Informatics UoE Knowledge Engineering 1



Reasoning under Uncertainty
Probabilistic Reasoning

Fuzzy logic
Dempster-Shafer Theory

Summary

Where are we?

Last time . . .

I Model-based reasoning

Today . . .

I Approaches to dealing with uncertainty
I Probabilistic Reasoning
I Fuzzy Logic
I Dempster-Shafer Theory
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Reasoning under Uncertainty

I So far, focus on certain knowledge
How do we model what we know?

I But how do we model uncertainty?

I Different aspects:
I Uncertainty regarding truthfulness of propositions
I Vagueness in the way knowledge is captured
I Questions of ignorance and confidence

I Different KR & R approaches for each of these
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Probabilistic Reasoning

I Most general and widespread method of uncertainty
reasoning

I Rests on mathematical foundations of probability theory

I Two interpretations of probability:
I Subjective: belief about likelihood of a proposition
I Objective: frequency of observed events in which

proposition holds

I Major advances in 90s, today highly popular field in AI

I Here: only very short overview (see PMR, LFD and
similar courses)
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Probability Theory

I Axioms of probability theory: P(false) = 0, P(true) = 1
P(a ∨ b) = P(a) + P(b) − P(a ∧ b)

I Other properties: P(¬a) = 1 − P(a), P(a) + P(¬a) = 1

I For discrete random variable D with domain 〈d1, . . . , dn〉:∑
n

i=1 P(D = di) = 1

I For atomic mutually exclusive events E such that a holds
in E (a) ⊆ E : P(a) =

∑
e∈E(a) P(e)

I Bayes’ rule: P(b|a) = P(a|b)P(b)
P(a)

I Conditional independence: P(a, b|c) = P(a|c)P(a|c)
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Example

Why is Bayes’ rule useful? Assume m denotes “patient has
meningitis”, s denotes “patient has a stiff neck” and we have
the following estimates:

P(s|m) = 0.5

P(m) = 1/50000

P(s) = 1/20

We can infer:

P(m|s) =
P(s|m)P(m)

P(s)
=

0.5 × 1/50000

1/20
= 0.0002
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Belief Networks

Using a graphical notation to represent probabilities of
propositions and conditional independence assumptions:
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Belief Networks
I Nodes represent propositionsm, annotated with

conditional probability tables
I Edges represent conditional dependencies
I Main idea: represent full joint probability distribution over

variables X1, . . .Xn (to obtain probability of conjunction
P(X1 = x1 ∧ . . . ∧ Xn = xn)) as product of independent
probabilities using Bayes’ Rule

I If parents(Xi ) are the parent nodes of Xi , the joint
probability distribution is given by

P(x1, . . . xn) =

n∏

i=1

P(xi |parents(Xi))
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Example

P(j ∧ m ∧ a ∧ ¬b ∧ ¬e) = P(j |a)P(m|a)P(a|¬b¬e)P(¬b)P(¬e) =

0.9 × 0.7 × 0.001 × 0.999 × 0.998 = 0.00062
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Critique

I Lots of methods for exact and approximate inference

I Area of Bayesian Learning

I Where do these probabilities come from?

I Where do the independence assumptions come from?

I Worst case: all variables depend on each other no gain
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Fuzzy Logic

I Method for expressing vagueness

I Uncertainty about degree of appropriateness of a
statement, not about its truthfulness

I Foundation: notion of fuzzy sets

I Allows for expressing degree with which an object belongs
to a set and applying mathematical methods to
manipulate these statements

I Fuzzy control: extremely successful in industrial
applications
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Fuzzy Sets

Fuzzy sets (unlike crisp ones) based on notion of “degree”

Informatics UoE Knowledge Engineering 138



Reasoning under Uncertainty
Probabilistic Reasoning

Fuzzy logic
Dempster-Shafer Theory

Summary

Fuzzy sets

I When describing concepts using subset relationships crisp
membership often inflexible

I Characteristic function: members have value 1,
non-members have value 0

I Take example of “young person” in terms of age
I Naive definition: Use, for example [0,20] as a crisp

interval
I Is someone one day after his 20th birthday not young?
I Note that this problem appears regardless of the bound

I Solution: Allow more intermediate values for
characteristic function (gradual membership)
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Operations on fuzzy sets

I Logical operations define

I Let T (A), T (B) fuzzy truth values of A and B

I T (A ∧ B) = min(T (A),T (B))
I T (A ∨ B) = max(T (A),T (B))
I T (¬A) = 1 − T (A)

I Truth-functional approach problems with
correlations and anti-correlations between propositions

I Example: Fuzzy truth value of “tall and heavy” will be
unreasonably high for someone who is extremely tall
although “heavy” should be less strict for very tall people
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Further Issues

I Devise rules of the form “if person is young and not
overweight then blood pressure is normal” to make
decisions

I Defuzzification: how to make crisp choices after
evaluation of fuzzy rules (e.g. take center of gravity of a
fuzzy set)

I Attempts to map fuzzy logic to probabilistic concepts
I Discrete observation interpretation:

P(Observer says person is tall and heavy|Height,Weight)
solves truth-functionality problems

I Random set interpretation: view Tall as a random
variable (denoting a set), P(Tall = S) is probability that
set S of persons would be identified as tall
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Critique

I Success in practical applications often attributed to:
I Use in limited, controllable domains
I Fine-tuning of parameters for a particular use
I No chaining of inferences

I Hard to combine with other kinds of KBS

I However, so far the only AI technology that has found its
way to (almost) every washing machine!
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Dempster-Shafer Theory

I Based on dealing with distinction between uncertainty

and ignorance

I Computes probability that evidence supports proposition
(rather than probability that proposition is true)

I Two elements:
I Obtaining degrees of belief for one question from

subjective probabilities for related question
I Combining such degrees of belief when they are based

on independent items of evidence
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Example

I Betty is reliable with probability 0.9

I She says a limb fell on my car (proposition A)
I A is not necessarily false if she is unreliable
I Statement justifies a degree of belief of 0.9 in A, and

zero degree of belief (not 0.1) that ¬A
I This does not mean I am sure ¬A is not the case, but

that have no evidence to believe otherwise

I Suppose Sally is also reliable with probability 0.9 and she
also claims A

I Probability of both being reliable is 0.81, and of at least
one being reliable is 1-0.01=0.99 my degree of belief
in A is 0.99
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Example

I Suppose they contradict each other (Sally says ¬A):
I Probabilities that only Betty/only Sally/neither of them

is reliable are 0.09/0.09/0.01, normalised 9/19, 9/19,
1/19

I Belief of 9/19 that A and belief of 9/19 that ¬A

I Begin with assumption that two questions (Did limb fall
on car? Is the witness reliable?) are independent

I Independence disappears when conflict between different
items of evidence becomes apparent
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Critique

I Strength of DS theory: discriminating between ignorance
and uncertainty

I Ease of representation of evidence at different levels of
abstraction

I “Interval” view appealing
I In our example, before evidence probability of A can be

from [0,1]
I After evidence [0.99,1] (if they agree) [9/19,10/19] (if

they disagree)

I However, in a complete Bayesian model evidence can be
included as a variable
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Summary

I Overview of different aspects of uncertainty
I Probabilistic approach: assigning probabilities to truth

value of propositions
I Fuzzy logic approach: assessing how appropriate a

proposition is under certain properties of an object
I Dempster-Shafer theory: assigning degrees of belief

vs. ignorance given some evidence
I (Default reasoning)

I Completes our account of knowledge representation and
reasoning

I Next block: Knowledge Synthesis

I Next lecture: Automated software synthesis
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