Reasoning under Uncertainty

Where are we?

Last time . . .
- Model-based reasoning

Today . . .
- Approaches to dealing with uncertainty
 - Probabilistic Reasoning
 - Fuzzy Logic
 - Dempster-Shafer Theory

Reasoning under Uncertainty

- So far, focus on certain knowledge
 How do we model what we know?
- But how do we model uncertainty?
- Different aspects:
 - Uncertainty regarding truthfulness of propositions
 - Vagueness in the way knowledge is captured
 - Questions of ignorance and confidence
- Different KR & R approaches for each of these

Probabilistic Reasoning

- Most general and widespread method of uncertainty reasoning
- Rests on mathematical foundations of probability theory
- Two interpretations of probability:
 - Subjective: belief about likelihood of a proposition
 - Objective: frequency of observed events in which proposition holds
- Major advances in 90s, today highly popular field in AI
- Here: only very short overview (see PMR, LFD and similar courses)
Probability Theory

- Axioms of probability theory: \(P(\text{false}) = 0, P(\text{true}) = 1 \)
- \(P(a \lor b) = P(a) + P(b) - P(a \land b) \)
- Other properties: \(P(\neg a) = 1 - P(a), P(a) + P(\neg a) = 1 \)
- For discrete random variable \(D \) with domain \(\{d_1, \ldots, d_n\} \):
 \[\sum_{i=1}^{n} P(D = d_i) = 1 \]
- For atomic mutually exclusive events \(E \) such that \(a \) holds in \(E(a) \subseteq E \):
 \[P(a) = \sum_{e \in E(a)} P(e) \]
- Bayes’ rule: \(P(b|a) = \frac{P(a|b)P(b)}{P(a)} \)
- Conditional independence: \(P(a, b|c) = P(a|c)P(b|c) \)

Example

Why is Bayes’ rule useful? Assume \(m \) denotes “patient has meningitis”, \(s \) denotes “patient has a stiff neck” and we have the following estimates:

\[
P(s|m) = 0.5 \\
P(m) = 1/50000 \\
P(s) = 1/20
\]

We can infer:

\[
P(m|s) = \frac{P(s|m)P(m)}{P(s)} = \frac{0.5 \times 1/50000}{1/20} = 0.0002
\]

Belief Networks

Using a graphical notation to represent probabilities of propositions and conditional independence assumptions:

- Nodes represent propositions, annotated with conditional probability tables
- Edges represent conditional dependencies
- Main idea: represent full joint probability distribution over variables \(X_1, \ldots, X_n \) (to obtain probability of conjunction \(P(X_1 = x_1 \land \ldots \land X_n = x_n) \)) as product of independent probabilities using Bayes’ Rule
- If parents(\(X_i \)) are the parent nodes of \(X_i \), the joint probability distribution is given by

\[
P(x_1, \ldots, x_n) = \prod_{i=1}^{n} P(x_i|\text{parents}(X_i))
\]
Example

\[P(j \wedge m \wedge a \wedge \neg b \wedge \neg e) = P(j|a)P(m|a)P(a|\neg b \wedge \neg e)P(\neg b)P(\neg e) = 0.9 \times 0.7 \times 0.001 \times 0.999 \times 0.998 = 0.00062 \]

Critique

▶ Lots of methods for exact and approximate inference
▶ Area of Bayesian Learning
▶ Where do these probabilities come from?
▶ Where do the independence assumptions come from?
▶ Worst case: all variables depend on each other ⇒ no gain

Fuzzy Logic

▶ Method for expressing vagueness
▶ Uncertainty about degree of appropriateness of a statement, not about its truthfulness
▶ Foundation: notion of fuzzy sets
▶ Allows for expressing degree with which an object belongs to a set and applying mathematical methods to manipulate these statements
▶ Fuzzy control: extremely successful in industrial applications

Fuzzy Sets

Fuzzy sets (unlike crisp ones) based on notion of “degree”
Fuzzy sets

- When describing concepts using subset relationships crisp membership often inflexible
- **Characteristic function**: members have value 1, non-members have value 0
- Take example of “young person” in terms of age
 - Naive definition: Use, for example [0, 20] as a crisp interval
 - Is someone one day after his 20th birthday not young?
 - Note that this problem appears regardless of the bound
- Solution: Allow more intermediate values for characteristic function (gradual membership)

Operations on fuzzy sets

- Logical operations define
- Let $T(A)$, $T(B)$ fuzzy truth values of A and B
 - $T(A \land B) = \min(T(A), T(B))$
 - $T(A \lor B) = \max(T(A), T(B))$
 - $T(\neg A) = 1 - T(A)$
- **Truth-functional approach** problems with correlations and anti-correlations between propositions
- Example: Fuzzy truth value of “tall and heavy” will be unreasonably high for someone who is extremely tall although “heavy” should be less strict for very tall people

Further Issues

- Devise rules of the form “if person is young and not overweight then blood pressure is normal” to make decisions
- **Defuzzification**: how to make crisp choices after evaluation of fuzzy rules (e.g. take center of gravity of a fuzzy set)
- Attempts to map fuzzy logic to probabilistic concepts
 - Discrete observation interpretation: $P(\text{Observer says person is tall and heavy} | \text{Height, Weight})$ solves truth-functionality problems
 - Random set interpretation: view Tall as a random variable (denoting a set), $P(\text{Tall} = S)$ is probability that set S of persons would be identified as tall

Critique

- Success in practical applications often attributed to:
 - Use in limited, controllable domains
 - Fine-tuning of parameters for a particular use
 - No chaining of inferences
- Hard to combine with other kinds of KBS
- However, so far the only AI technology that has found its way to (almost) every washing machine!
Dempster-Shafer Theory

- Based on dealing with distinction between **uncertainty** and **ignorance**
- Computes probability that evidence supports proposition (rather than probability that proposition is true)
- Two elements:
 - Obtaining degrees of belief for one question from subjective probabilities for related question
 - Combining such degrees of belief when they are based on independent items of evidence

Example

- Betty is reliable with probability 0.9
- She says a limb fell on my car (proposition A)
 - A is not necessarily false if she is unreliable
 - Statement justifies a degree of belief of 0.9 in A, and zero degree of belief (not 0.1) that $\neg A$
 - This does not mean I am sure $\neg A$ is not the case, but that have no evidence to believe otherwise
- Suppose Sally is also reliable with probability 0.9 and she also claims A
 - Probability of both being reliable is 0.81, and of at least one being reliable is $1-0.01=0.99$
 - My degree of belief in A is 0.99

Critique

- Strength of DS theory: discriminating between ignorance and uncertainty
- Ease of representation of evidence at different levels of abstraction
- “Interval” view appealing
 - In our example, before evidence probability of A can be from [0,1]
 - After evidence [0.99,1] (if they agree) [9/19,10/19] (if they disagree)
- However, in a complete Bayesian model evidence can be included as a variable
Summary

- Overview of different aspects of uncertainty
 - Probabilistic approach: assigning probabilities to truth value of propositions
 - Fuzzy logic approach: assessing how appropriate a proposition is under certain properties of an object
 - Dempster-Shafer theory: assigning degrees of belief vs. ignorance given some evidence
 - (Default reasoning)
- Completes our account of knowledge representation and reasoning
- Next block: Knowledge Synthesis
- Next lecture: Automated software synthesis