Knowledge Engineering Semester 2, 2004-05

Michael Royatsos mrovatso@inf.ed.ac.uk

informatics

Lecture 7 - Model-Based Reasoning 4th February 2005

Last time

Where are we?

- we discussed further issues in ontologies
 - Semantic networks
 - Description logics
- Reasoning with default information

Today . . .

Model-Based Reasoning Systems

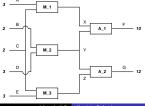
Knowledge Engineering

informatics

Model-Based Reasoning

- ▶ So far, discussion focussed on general KR&R principles
- But what is their practical use?
- Discuss Model-Based Reasoning (MBR) as a "case study" in designing practical reasoning systems
- Basic idea: use a model of the system as a "simulation" of it to conduct reasoning about its behaviour
- ▶ Describe system in terms of its components and the interactions between them

Model-Based Reasoning


- Can be used in two ways:
 - 1. diagnosis (detection of faults)
 - 2. prediction of behaviour (for design & configuration)
- Here: Restriction to diagnostic tasks
- Interaction between predicted behaviour and actual observations identify system components that failed
- Particular challenge: identifying multiple simultaneous faults

General Diagnostic Engine

- General Diagnostic Engine (GDE): a MBR engine intended to locate and isolate multiple simultaneous faults
- Assumptions:
 - Faults are in components, not in interconnections (unless these are defined as components)
 - Device representation is faithful
 - Faults are not intermittent
- Will look at extended example rather than precise algorithm

Example

Circuit of adders A_i and multipliers M_i , inputs A-E and outputs F. G

Minimal Candidates

- Basic problem: F should be 12 but is 10
- Treat input/output values (e.g. A = 3) as facts and statements facts like " M_1 is working" (written as M_1) as assumptions
- Can generate further facts under assumptions give:
 - 1. $X = 6\{M_1\}$
 - 2. $Y = 6\{M_2\}$
 - 3. $Z = 6\{M_3\}$
 - 4. $Z = 6\{M_2, A_2\}$ (from 2. and G = 12)
 - 5. $X = 4\{M_2, A_1\}$ (from 2. and F = 10)
 - 6. $Y = 4\{M_1, A_1\}$ (from 1. and F = 10)
 - 7. $Z = 8\{M_1, A_1, A_2\}$ (from 6. and G = 12)

Minimal Candidates

- Contradiction btw. 1. and 5. ⇒ not all of M₁, M₂ and A₁ are working (same conflict caused by 6.)
- Conflict btw. 7. and 3. → not all of M₁, A₁, A₂, M₃ are working
- At least one of {M₁, M₂, A₁} and at least one of $\{M_1, M_3, A_1, A_2\}$ are faulty
- Set of minimal candidates: {A₁}, {M₁}, {A₂, M₂}. $\{M_2, M_3\}$ (minimal sets of components that would explain both assertions)
- → Attention should focus on A₁ and M₁ → measure X (measurement becomes a new fact and process continues)

Candidate Discrimination

its measurement

Cases after measurement:

minimal candidate

X = 4. conflict with {M₁} → {M₁} becomes new

candidates $\{A_1\}$, $\{M_2, M_3\}$ and $\{A_2, M_2\}$ X ≠ 4 and X ≠ 6, conflict with {A₁, M₂}, {A₁, A₂, M₃}

and {M₁} ⇒ minimal candidates {A1, M1},

In this simple example. X was identified beacuse more

probable singletons $\{M_1\}$ and $\{A_1\}$ are differentiable with

X = 6, conflict with {A₁, M₂} and {A₁, A₂, M₃} → new

Candidate Discrimination

- Problem with above procedure: generates too many possible faults
- ▶ How to identify best measurements to distinguish between candidates?
- Recall that new predictions are stored as statements $x = v\{e_1, \dots, e_m\}$ where v is the value of x warranted by the minimal set of environments $\{e_1, \dots, e_m\}$
- Any measurement that contradicts a predicted value is a conflict for the supporting environments
- In previous example: X = 4 vs. X = 6 resulted in one of $\{A_1\}, \{M_1\}, \{A_2, M_2\}, \{M_2, M_3\}$ being faulty

 $\{M_1, M_2, M_3\}, \{A_2, M_1, M_2\}$

Candidate Discrimination

- In general case: hypothesize over possible measurements
- ▶ Choose minimal entropy ∑_i −p_i log p_i where p_i is probability that i-th remaining candidate is culprit
- ▶ Let m the number of values for x_i. S_{iv} the number of candidates which require x_i to have value v_{ik} and U_i the set of candidates that will not be eliminated regardless of the value of x_i
- Choose x_i that minimises

$$\sum_{k=1}^{m} [p(S_{ik}) + \frac{p(U_i)}{m}] \log[p(S_{ik}) + \frac{p(U_i)}{m}] - p(U_i) \log \frac{1}{m}$$

 Relies on probabilities of failure for components to calculate $p(S_{i\nu})$ and $p(U_i)$

Simplified method

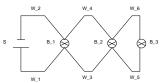
- Assume that all components fail independently with equal probability (strong assumption!)
- Consider only candidates with minimum number of elements = N
- Let c_{iν} number of candidates that predict value v_{iν} for variable x:
- Choose x_i that minimises ∑_k c_{ik} log c_{ik}
- Iteratively perform one-step lookahead for N = 1. N = 2. etc.

Example

- ▶ In our example, two single-component candidates: $\{M_1\}$, $\{A_1\}$ (N=1)
- ▶ Possible measurements:
 - X = 4
 M₁ faulty (since it predicts X = 6), A₁ not (it is part of environments {A₁, M₂} and {A₁, A₂, M₃}
 - X = 6 → A₁ faulty
 - Y = 6 or Z = 6 → A₁ or A₂ faulty
 - Things like Y = 4 are ruled out in present consideration (its supporting environment would be {A₁, M₁} (same for Z = 8)
- One component that predicts either value for X, two for the only possibly value for Y and Z
- Entropies X: 1 log 1 + 1 log 1 = 0, Y/Z: 2 log 2 = 1.4

matics HoF Knowledge Engineering

el-Based Reasoning


linimal Candidates

Reasoning Minimal Car tic Engine Candidate D

Minimal Candidates Candidate Discriminat Fault Models

Example

Observations: B_3 is lit while B_1 and B_2 are off

Minimal candidates: $\{B_1, B_2\}$, $\{S, B_3\}$, $\{S, W_5\}$, $\{W_2, W_5\}$ etc. (22 total)

Introducing Fault Models

- GDE based on idea of "component is faulty if retraction of its correctness assumption is consistent with observations"
- ▶ But no knowledge of how components might fail
- Consider following example: If some bulbs in an electrical circuit are not lit, GDE would also consider that lit bulbs are faulty since they operate without power and battery is empty
- ▶ Logically consistent but counter-intuitive
- Solution: include explicit fault models such that if each
 of the known possible faults contradicts observations the
 component can't be faulty

Informatics UoE

Knowledge Engineer

Minimal Candidates Candidate Discriminat

Fault Models

- Only {B₁, B₂} reasonable, otherwise wires would have to produce voltage or bulb lit without voltage
- ▶ But GDE would require further measurements . . .
- ▶ Use following fault models
 - ▶ Bulb broken
 - Wire broken
 Battery empty
- First one rules out all candidates in which B₃ occurs
- Since previous candidates were minimal, delete those with deleted elements
- ▶ B₃ is lit, so there is current ⇒ eliminate all candidates with faulty battery or wires

Summary

- ▶ Model-based reasoning
- ► General Diagnostic Engine
- ► Candidate Discrimination
- ► Fault Models
- ▶ Next time: Reasoning with Uncertainty

Informatics UoE Knowledge Engineering