Today

Knowledge Engineering Semester 2, 2004-05

Michael Royatsos mrovatso@inf ed ac uk

informatics

Lecture 4 - Version Space Example/Logic Recap 21th January 2005

- Example: Version Space Learning
- Logic (Recap)

	informátics		informat
Informatics UoE	Knowledge Engineering 1	Informatics UoE	Knowledge Engineering
Example: Version Space Learning		Example: Version Space Learning	
Recap: Logic		Recap: Logic	

informatica

Updating the Version Space

- Final issue: how to update the version space?
- Assume S_i and G_i members of S-/G-sets. Each example can be a false positive (FP)/false negative (FN) for each of them:
 - 1. FP for $S_i \Rightarrow S_i$ too general \Rightarrow throw S_i out (no consistent specialisations of S_i exist by definition)
 - 2. FN for $S_i \Rightarrow S_i$ too specific \Rightarrow replace it by all its immediate generalisations
 - 3. FP for $G_i \Rightarrow G_i$ too general \Rightarrow replace it by all its immediate specilisations
 - FN for G_i ➡ G_i too specific ➡ throw G_i out (no consistent generalisations of G_i exist by definition)

Example: The "Mondrians" World

Idea: describe paintings by number/type of lines, number of rectangles and number oc colours - which ones are "Mondrians"?

No

NO

4 Yes

10 4 No

10

Logic & Logic-Based Reasoning

- Very brief overview of central concepts (more thorough treatment: FAI notes, AIMA ch. 7-9)
- Purpose of logic (in AI): describe knowledge in a formal way such that a computer can conduct inference on it
- Example:

Socrates is human Every human is mortal Socrates is mortal

- Inference procedure: use set of logical sentences (knowledge base) to derive new facts
- Syntax defines the set of admissible logical formulae; semantics defines the meaning of a formula

Logic & Logical Reasoning

- (At least) two uses of inference procedures:
 - Proving a sentence (valid/satisfiable/unsatisfiable)
 - Deducing new knowledge
- Desirable properties:
 - Soundness the inference mechanism should only derive correct logical sentences
 - Completeness the inference mechanism should be able to prove any correct sentence
 - Tractability it should have reasonable time and space complexity
- Usually talk only about definite knowledge (though will look at methods for describing uncertain knowledge later on)

	informatics	införmör	
Informatics UoE	Knowledge Engineering 60	Informatics UoE	Knowledge Engineering 61
Example: Version Space Learning Recap: Logic		Example: Version Space Learning Recap: Logic	

Propositional Logic

A very simple logic ...

- ▶ Atomic propositions: *A*, *B*, *C* are assigned truth values from {*True*, *False*}
- ▶ Logical connectives ¬, ∨, wedge, etc. are used to connect these to clauses
- Semantics given by truth tables

A	В	$\neg A$	$A \wedge B$	$A \lor B$	$A \Rightarrow B$	$A \Leftrightarrow B$
F	F	Т	F	F	Т	Т
F	Т	Т	F	Т	Т	F
Т	F	F	F	Т	F	F
Т	Т	F	Т	Т	Т	Т

 Easiest way to establish truth value of a sentence: truth table construction

Propositional Logic

Alternatively use inference rules:

$$\frac{\alpha \Rightarrow \beta, \quad \alpha}{\beta}, \quad \frac{\alpha \wedge \beta}{\alpha}, \quad \frac{\alpha \vee \beta, \quad \neg \beta \vee \gamma}{\alpha \vee \gamma}, \quad \mathsf{etc.}$$

▶ Resolution: If I_i = ¬m_j

$$\frac{l_1 \vee \ldots \vee l_k, \quad m_1 \vee \ldots \vee m_n}{l_1 \vee \ldots \vee l_{i-1} \vee l_{i+1} \vee l_k \vee m_1 \vee \ldots \vee m_{j-1} \vee m_{j+1} \vee \ldots \vee m_n}$$

 Any complete search algorithm using just the resolution rule can derive any conclusion entailed by a knowledge base in PL

informatics

First-Order Logic

A richer logic that allows for describing properties of and relationships between objects

- Syntax:
 - Predicate symbols P(x, y), Q(f(x)), etc.
 - Variables x, y, constants John, Mary, functions f(x) (terms consist of functions an variables)
 - ► Usual connectives V. ∧ etc.
 - ► Quantifiers: ∀. ∃
- Example:

 $\forall x \exists y. (x = ArmOf(John) \land Girl(y) \Rightarrow Longer(x, ArmOf(y)))$

 Quantifiers allow variables to range over infinite domains BUT NO QUANTIFICATION OVER PREDICATES!

First-Order Logic

- A substitution replaces variables by terms $\vartheta = \{x / John, v / Marv\}$
- Unification: process of making two formulae identical by determining and applying suitable substitutions
- Example: P(x, f(x)) and P(v, f(v)) can be unified by applying $\{x/y\}$ to both (while P(John) and P(Mary)cannot be unified)
- Interpretation: A function that assigns a truth value to each ground (variable-free) proposition
- Inference: essentially uses similar rules to propositional logic combined with unification

		informatics			informatics
Informatics UoE	Knowledge Engineering	64	Informatics UoE	Knowledge Engineering	
Example: Version Space Learning					

First-Order Logic

Example: if UNIFY($l_i, \neg m_i$) = ϑ , then we can derive

 $\frac{l_1 \vee \ldots \vee l_k, \quad m_1 \vee \ldots \vee m_n}{\text{SUBST}(\vartheta, l_1 \vee \ldots \vee l_{i-1} \vee l_i + 1 \vee l_k \vee m_1 \vee \ldots \vee m_{i-1} \vee m_{i+1} \vee \ldots \vee m_n)}$

by applying the generalised first-order resolution rule

- First-order resolution: refutation-complete, i.e. if a set of sentences is unsatisfiable, resolution will always derive a contradiction
- Cannot be used to generate all logical consequences, but can be used to establish that a given sentence is entailed by a set of sentences

informatica