Knowledge Engineering Semester 2, 2004-05

Michael Rovatsos mrovatso@inf.ed.ac.uk

Lecture 3 – Inductive Learning: Version Spaces 18th January 2005

Where are we?

- Last time . . .
 - we started talking about Knowledge Acquisition
 - suggested methods for automating it
 - in particular: Decision Tree Learning
- ► Today . . .
 - we will discuss another inductive learning method
 - look at inductive learning with a knowledge representation touch
 - Version Space Learning

Knowledge Representation & Learning

- Interfacing between Knowledge Acquisition & Knowledge Representation:
 - Using results from KA in KR systems
 - Using knowledge from the KR system in the KA process (will be discussed in "Knowledge Evolution" part)
- Methods such as decision tree learning cannot be integrated in a KR system directly
- Would like to define learning algorithms that operate on generic representations, e.g. logic

Knowledge Representation & Learning

Current Best Hypothesis Search Version Space Learning Summary

Example

Recall decision tree learning examples:

	Attributes										Target
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Туре	Est	WillWait
X_1	Т	F	F	T	Some	\$\$\$	F	Т	French	0–10	Т
X_2	Т	F	F	T	Full	\$	F	F	Thai	30–60	F
X_3	F	Т	F	F	Some	\$	F	F	Burger	0–10	Т
X_4	Т	F	Т	T	Full	\$	F	F	Thai	10–30	Т
:	:	:	:	:	:	•	:	:	•	:	:
•	·	•	•	· ·	· ·	•	-	-	•	•	•

View e.g. example X₁ as a logical formula: Alternate(X₁)∧¬Bar(X₁)∧¬Fri/Sat(X₁)∧Hungry(X₁)...

• Call this formula the **description** $D(X_i)$ of X_i

Example: Describing DTL in First-Order Logic

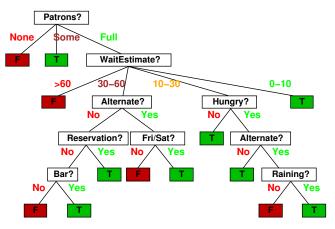
- ► Classification: *WillWait*(X₁)
- ► Use generalised notation Q(X_i)/¬Q(X_i) for classification of positive/negative examples
- Training set = conjunction of all description and classification sentences

 $D(X_1) \wedge Q(X_1) \wedge D(X_2) \wedge \neg Q(X_2) \wedge D(X_3) \wedge Q(X_3) \dots$

► Each hypothesis H_i is equivalent to a **candidate** definition $C_i(x)$ such that $\forall xQ(X) \Leftrightarrow C_i(x)$

Example

Recall decision tree from last lecture:



Example

This is equivalent to the disjunction of all branchens that lead to a "true" node (formula for each branch = conjunction of attribute values on branch)

$$\begin{array}{ccc} Q(r) & & C_{i}(r) \\ \forall r \ \hline WillWait(r) & \Leftrightarrow & \overrightarrow{Patrons(r, Some)} \\ & \lor & (Patrons(r, \ Full) \land Hungry(r) \land Type(r, French)) \\ & \lor & (Patrons(r, \ Full) \land Hungry(r) \land Type(r, Thai) \\ & \land Fri/Sat(r)) \\ & \lor & (Patrons(r, \ Full) \land Hungry(r) \land Type(r, Burger)) \end{array}$$

Hypotheses and Hypothesis Spaces

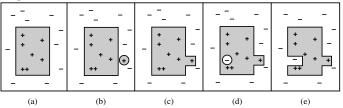
- Set of examples that satisfy a candidate definition = extension of the respective hypothesis
- In the learning process, we can rule out hypotheses that are not consistent with examples
- Two cases:
 - False negative: hypothesis predicts negative outcome but classification of example is positive
 - False positive: hypothesis predicts positive outcome but classification of example is negative

Hypotheses and Hypothesis Spaces

- ► Learning algorithm believes that one of its hypotheses is true, i.e. H₁ ∨ H₂ ∨ H₃ ∨ ...
- Each false positive/false negative could be used to rule out inconsistent hypotheses from the hyp. space
 general model of inductive learning
- But not practicable if hyp. space is vast, e.g. all formulae of first-order logic
- Have to look for simpler methods:
 - Current-best hypothesis search
 - Version space learning

Current-Best Hypothesis Search

- Idea very simple: adjust hypothesis to maintain consistency with examples
- Uses specialisation/generalisation of current hypothesis to exclude false positives/include false negatives



 Assumes "more general than" and "more specific than" relations to search hypothesis space efficiently

Current-Best Hypothesis Search

CURRENT-BEST-LEARNING(*examples*)

- 1 $H \leftarrow$ any hypothesis consistent with the first example in *examples*
- 2 for each remaining example e in examples do
- 3 if e is a false positive for H then
- 4 $H \leftarrow$ choose a specialisation of H consistent with *examples*
- 5 else if e is a false negative for H then
- 6 $H \leftarrow$ choose a generalisation of H consistent with *examples*
- 7 if no consistent specialisation/generalisation can be found then fail
- 8 return H

Things to note:

- Non-deterministic choice of specialisation/generalisation
- Does not provide rules for spec./gen.
- One possibility: add/drop conditions

Version Space Learning

- Problems of current-best learning:
 - Have to check all examples again after each modification
 - Involves great deal of backtracking
- Alternative: maintain set of all hypotheses consistent with examples
- Version space = set of remaining hypotheses
- Algorithm: VERSION-SPACE-LEARNING(examples)
 - 1 $V \leftarrow$ set of all hypotheses
 - 2 for each example e in examples do
 - 3 if V is not empty

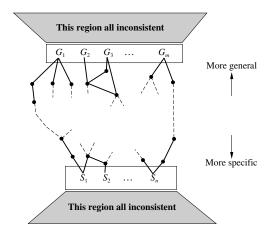
4 **then** $V \leftarrow \{h \in V : h \text{ is consistent with } e\}$

5 return V

Version Space Learning

- Advantages:
 - incremental approach
 - (don't have to consider old examples again)
 - least-commitment algorithm
- Problem: How to write down disjunction of all hypotheses?
 - \Rightarrow think of interval notation [1,2]
- Exploit ordering on hypotheses and boundary sets
 - G-set most general boundary (no more general hypotheses are consistent with all examples)
 - S-set most specific boundary (no more specific hypotheses are consistent with all examples)

Version Space Learning

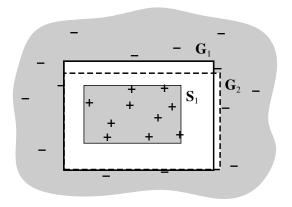


Version Space Learning

- Everything between G and S (version space) is consistent with examples and represented by boundary sets
- Initially: $G = \{ True \}, S = \{ False \}$
- How to prove that this is a reasonable representation?
- Need to show two properties:
 - Every consistent H not in the boundary sets is more specific than some G_i and more general than some S_j (follows from definition)
 - Every H more specific than some G_i and more general than some S_j is consistent.
 Any such H rejects all negative examples rejected by each member of G and accepts all positive examples accepted by any member of S ➡ H consistent

Version space learning

There are no known examples "between" S and G, i.e. outside S but inside G:



Updating the Version Space

- Final issue: how to update the version space?
- Assume S_i and G_i members of S-/G-sets.
 Each example can be a false positive (FP)/false negative (FN) for each of them:
 - 1. FP for $S_i \Rightarrow S_i$ too general \Rightarrow throw S_i out (no consistent specialisations of S_i exist by definition)
 - FN for S_i ⇒ S_i too specific ⇒ replace it by all its immediate generalisations
 - 3. FP for $G_i \Rightarrow G_i$ too general \Rightarrow replace it by all its immediate specilisations
 - 4. FN for $G_i \Rightarrow G_i$ too specific \Rightarrow throw S_i out (no consistent generalisations of G_i exist by definition)

Remarks/Problems

- After termination of the algorithm:
 - ► Only one concept left ⇒ unique hypothesis or
 - S/G becomes empty ⇒ version space collapses (no consistent hypothesis exists) or
 - we run out of examples with several hypotheses remaining => use disjunction or e.g. majority vote
- Drawbacks of version space learning:
 - ► Noise/insufficient attributes ⇒ VS collapses
 - ► Allowing unlimited disjunction ⇒ G will always contain disjunction of negation of examples, S will contain disjunction of positive examples (but use generalisation hierarchy)
 - Number of elements in S and G may grow exponentially informatics

Summary

- How to deal with knowledge-based representations of inductive learning?
- Described DTL in terms of logic
- Introduced current-best learning (problems: backtracking, non-incremental)
- Version spaces as an incremental method of inductive learning
- Next time: Knowledge Representation & Reasoning

Announcements

- There will be no lecture on the 28th January! (Friday next week)
- Prepared a preliminary listing of all necessary AIMA chapters for those who want to copy them
- Paper copies of previous KE notes available from the ITO (if "4up" format is too small to read)