Knowledge Engineering Semester 2, 2004-05

Michael Royatsos mrovatso@inf.ed.ac.uk

informatics

Lecture 3 - Inductive Learning: Version Spaces 18th January 2005

Knowledge Representation & Learning

- Interfacing between Knowledge Acquisition & Knowledge Representation:
 - Using results from KA in KR systems
 - Using knowledge from the KR system in the KA process (will be discussed in "Knowledge Evolution" part)
- ▶ Methods such as decision tree learning cannot be integrated in a KR system directly
- Would like to define learning algorithms that operate on generic representations, e.g. logic

Where are we?

- ▶ Last time
 - we started talking about Knowledge Acquisition
 - suggested methods for automating it ▶ in particular: Decision Tree Learning
- ► Today . . .
 - · we will discuss another inductive learning method
 - Iook at inductive learning with a knowledge representation touch
 - Version Space Learning

Example

Recall decision tree learning examples:

	l		F F T Some \$\$\$ F T French 0-10 F F T Full \$ F F Thai 30-60 T F F Some \$ F F Burger 0-10 F T T Full \$ F F Thai 10-30							Target	
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	T	F	F	T		555	F	T	French		T
X_2	T	F	F	T	Full	5	F	F	Thai	30-60	F
X ₃	F	T	F	F	Some	5	F	F	Burger	0-10	T
X_4	T	F	T	T	Full	5	F	F	Thai	10-30	T
-											
L:	:	- :	:		:	:					

- View e.g. example X₁ as a logical formula: $Alternate(X_1) \land \neg Bar(X_1) \land \neg Fri / Sat(X_1) \land Hungry(X_1) \dots$
- Call this formula the description D(X_i) of X_i

Example: Describing DTL in First-Order Logic

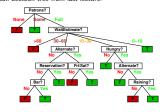
- ▶ Classification: WillWait(X₁)
- ▶ Use generalised notation Q(X_i)/¬Q(X_i) for classification of positive/negative examples
- Training set = conjunction of all description and classification sentences

$$D(X_1) \wedge Q(X_1) \wedge D(X_2) \wedge \neg Q(X_2) \wedge D(X_3) \wedge Q(X_3) \dots$$

 Each hypothesis H_i is equivalent to a candidate **definition** $C_i(x)$ such that $\forall x Q(X) \Leftrightarrow C_i(x)$

Example

Recall decision tree from last lecture:



Example

This is equivalent to the disjunction of all branchens that lead to a "true" node (formula for each branch = conjunction of attribute values on branch)

Hypotheses and Hypothesis Spaces

- Set of examples that satisfy a candidate definition = extension of the respective hypothesis
- In the learning process, we can rule out hypotheses that are not consistent with examples
- Two cases:
 - ▶ False negative: hypothesis predicts negative outcome but classification of example is positive
 - ▶ False positive: hypothesis predicts positive outcome but classification of example is negative

Hypotheses and Hypothesis Spaces

- Learning algorithm believes that one of its hypotheses is true, i.e. $H_1 \vee H_2 \vee H_3 \vee \dots$
- Each false positive/false negative could be used to rule out inconsistent hypotheses from the hyp. space
- peneral model of inductive learning
- But not practicable if hyp, space is vast, e.g. all formulae of first-order logic
- Have to look for simpler methods:
 - · Current-best hypothesis search
 - Version space learning

Knowledge Engineering

Current-Best Hypothesis Search

Current-Best-Learning(examples)

- H ← any hypothesis consistent with the first example in examples
- 2 for each remaining example e in examples do
- 3 if e is a false positive for H then
- H ← choose a specialisation of H consistent with examples
- else if e is a false negative for H then
- H ← choose a generalisation of H consistent with examples if no consistent specialisation/generalisation can be found then fail
- return H

Things to note:

- Non-deterministic choice of specialisation/generalisation
- Does not provide rules for spec./gen.
- One possibility: add/drop conditions

Current-Best Hypothesis Search

- Idea very simple: adjust hypothesis to maintain consistency with examples
- Uses specialisation/generalisation of current hypothesis to exclude false positives/include false negatives

Assumes "more general than" and "more specific than" relations to search hypothesis space efficiently

Version Space Learning

- Problems of current-best learning:
 - Have to check all examples again after each modification
 - Involves great deal of backtracking
- Alternative: maintain set of all hypotheses consistent with examples
- Version space = set of remaining hypotheses
- Algorithm: VERSION-SPACE-LEARNING (examples)
 - V ← set of all hypotheses
 - - for each example e in examples do
 - if V is not empty
 - then $V \leftarrow \{h \in V : h \text{ is consistent with } e\}$
 - return V

Advantages:

- incremental approach
- (don't have to consider old examples again)
- least-commitment algorithm
- Problem: How to write down disjunction of all hypotheses?
 - think of interval notation [1, 2]
- Exploit ordering on hypotheses and boundary sets
 - ► G-set most general boundary (no more general hypotheses are consistent with all examples)
 - ▶ S-set most specific boundary (no more specific hypotheses are consistent with all examples)

Knowledge Engineering

This region all inconsisten

This region all inconsistent

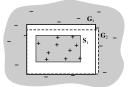
Version Space Learning

- Everything between G and S (version space) is consistent with examples and represented by boundary sets
- ▶ Initially: G = {True}, S = {False}
- ▶ How to prove that this is a reasonable representation?
- Need to show two properties:
 - Every consistent H not in the boundary sets is more specific than some G_i and more general than some S_i (follows from definition)
 - Every H more specific than some G and more general than some S_i is consistent.
 - Any such H rejects all negative examples rejected by each member of G and accepts all positive examples accepted by any member of $S \Rightarrow H$ consistent

Version space learning

Version Space Learning

There are no known examples "between" S and G, i.e. outside S but inside G:



Updating the Version Space

- Final issue: how to update the version space?
- Assume S_i and G_i members of S-/G-sets. Each example can be a false positive (FP)/false negative
 - (FN) for each of them: FP for S_i ⇒ S_i too general ⇒ throw S_i out (no
 - consistent specialisations of Si exist by definition) FN for S_i ⇒ S_i too specific ⇒ replace it by all its
 - immediate generalisations FP for G_i ⇒ G_i too general ⇒ replace it by all its
 - immediate specilisations FN for G: → G: too specific → throw S: out (no
 - consistent generalisations of G exist by definition)

Summary

- How to deal with knowledge-based representations of inductive learning?
- Described DTL in terms of logic
- Introduced current-best learning (problems: backtracking, non-incremental)
- Version spaces as an incremental method of inductive learning
- Next time: Knowledge Representation & Reasoning

Remarks/Problems

- After termination of the algorithm:
 - Only one concept left wunique hypothesis or
 - S/G becomes empty → version space collapses (no consistent hypothesis exists) or
 - we run out of examples with several hypotheses remaining - use disjunction or e.g. majority vote
- Drawbacks of version space learning:
 - Noise/insufficient attributes > VS collapses
 - ▶ Allowing unlimited disjunction ⇒ G will always contain disjunction of negation of examples, S will contain disjunction of positive examples (but use generalisation hierarchy)
 - Number of elements in S and G may grow exponentially

Announcements

- ▶ There will be no lecture on the 28th January! (Friday next week)
- Prepared a preliminary listing of all necessary AIMA chapters for those who want to copy them
- Paper copies of previous KE notes available from the ITO (if "4up" format is too small to read)