Inductive Learning Decision Tree Learning Attribute Selection Further Issues/Summary

#### Knowledge Engineering Semester 2, 2004-05

Michael Rovatsos mrovatso@inf.ed.ac.uk





#### Lecture 2 – Inductive Learning: Decision Trees 14th January 2005



### Where are we?

- Last time ...
  - we defined knowledge, KBS and KE
  - looked at KE process
  - identified important building blocks of KE process.
- Today . . .
  - marks the beginning of the "Knowledge Acquisition" (KA) part of the module
  - we will discuss methods for automating KA
  - in particular: Decision Tree Learning

# Knowledge Acquisition

- Knowledge Acquisition generally considered bottleneck in KE process
- Informal methods:
  - ► Expert interviews (today developers ≠ experts)
  - Analysis of organisational databases and documents
  - Independent analysis of domain knowledge (textbooks, online documents, etc.)
- ► (Although inevitable) these methods are complex, costly, and inflexible ⇒ automation desirable
- Discussion of machine learning methods, in particular: inductive (symbolic) learning

# Inductive Learning

- Idea: we are provided with examples (x, f(x)) where f(x) is the correct value of the target function f for input x and we want to learn f
- Task of inductive inference:

Given a collection of examples of f, return a function h that approximates f

- ► *h* is a **hypothesis** taken from a **hypothesis space** *H*
- ► (Pure) inductive inference assumes no prior knowledge
- Validation: construct/adjust h using a training set, evaluate generalisation capabilities on test set

# Inductive Learning

- Inductive learning (IL) is a form of supervised learning: information about the output value f(x) of x is explicit
- Art of inductive learning: given a set of training examples, choose the best hypothesis
- h consistent: agrees with all example data seen so far (not all learning algorithms return consistent hypotheses)
- H defines the range of functions we can use and determines expressiveness of hypothesis
- Learning problem realisable if f(x) ∈ H (often this is not known in advance)

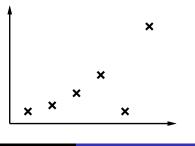
# Choosing Hypotheses

- Ockham's razor: prefer the simplest hypothesis consistent with the data
- Why is this a reasonable policy?
  - Intuitively, why choose complex hypothesis if simple one does the job?
  - There exist more long (i.e. more complex) hypotheses than short ones

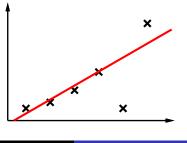
➡ accidental choice of bad hypothesis that is consistent with data is more unlikely if the hypothesis is simple

- Problem: identifying what simple hypotheses are
- Trade-off: the more expressive the hypothesis space, the more examples are needed (and the more the complex learning algorithm)

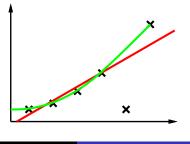
- Curve fitting: consider real numbers x and f(x) as data points (examples)
- Assume *H* is the set of polynomials, e.g. 5x,  $3x^2 + 2$ ,  $x^5 3x^4 + 2$ , etc.
- Construct h such that it agrees with f on training set



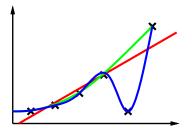
- Curve fitting: consider real numbers x and f(x) as data points (examples)
- Assume *H* is the set of polynomials, e.g. 5x,  $3x^2 + 2$ ,  $x^5 3x^4 + 2$ , etc.
- Construct h such that it agrees with f on training set



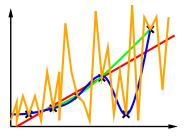
- Curve fitting: consider real numbers x and f(x) as data points (examples)
- Assume *H* is the set of polynomials, e.g. 5x,  $3x^2 + 2$ ,  $x^5 3x^4 + 2$ , etc.
- Construct *h* such that it agrees with *f* on **training set**



- Curve fitting: consider real numbers x and f(x) as data points (examples)
- Assume *H* is the set of polynomials, e.g. 5x,  $3x^2 + 2$ ,  $x^5 3x^4 + 2$ , etc.
- Construct h such that it agrees with f on training set



- Curve fitting: consider real numbers x and f(x) as data points (examples)
- Assume *H* is the set of polynomials, e.g. 5x,  $3x^2 + 2$ ,  $x^5 3x^4 + 2$ , etc.
- Construct h such that it agrees with f on training set





# Describing IL Methods

- What kind of information do the examples offer?
  - How much training data is available? All at once?
  - What are their attributes and those attributes' domains (boolean, discrete, continuous) ?
  - What is the range of possible classifications?
  - Do we have to consider **noise** in the data?
- The hypothesis space:
  - Choice of right representation
  - Questions of expressiveness vs. complexity
  - How can the learning result be used after learning?
- Choosing hypotheses:
  - Incremental vs. batch processing of examples
  - Refining an initial hypothesis vs. starting with none
  - What kind of inductive bias is applied?

### **Decision Trees**

- Attribute-based classification learning:
  - Example input x: situation/object described in terms of attribute values
  - Example output f(x): a discrete-valued classification decision
- Here: Boolean classification, each example is classified as positive (true) or negative (false)
- Alternatively: f describes an unknown concept, and all values of x for which f(x) = true describe the instances of this concept
- Hypothesis = a decision tree (DT) whose nodes correspond to tests on attribute values to decide whether f(x) is true or false

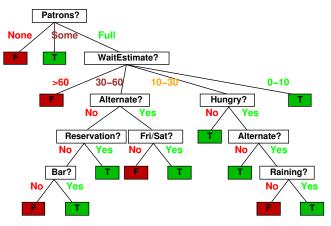
Assume we are given a set of situations in which a customer will or will not wait in a restaurant (examples), i.e. the **goal predicate** is WillWait(x).

|                        | Attributes |     |     |     |      |        |      |     |         | Target |          |
|------------------------|------------|-----|-----|-----|------|--------|------|-----|---------|--------|----------|
|                        | Alt        | Bar | Fri | Hun | Pat  | Price  | Rain | Res | Туре    | Est    | WillWait |
| $X_1$                  | Т          | F   | F   | Т   | Some | \$\$\$ | F    | Т   | French  | 0–10   | Т        |
| $X_2$                  |            | F   | F   | Т   | Full | \$     | F    | F   | Thai    | 30–60  | F        |
| $X_3$                  | F          | Т   | F   | F   | Some | \$     | F    | F   | Burger  | 0–10   | Т        |
| $X_4$                  | Т          | F   | T   | Т   | Full | \$     | F    | F   | Thai    | 10–30  | Т        |
| $X_5$                  | T          | F   | T   | F   | Full | \$\$\$ | F    | Т   | French  | >60    | F        |
| $X_6$                  | F          | Т   | F   | Т   | Some | \$\$   | Т    | T   | Italian | 0–10   | Т        |
| X7                     | F          | Т   | F   | F   | None | \$     | Т    | F   | Burger  | 0–10   | F        |
| $X_8$                  | F          | F   | F   | Т   | Some | \$\$   | Т    | Т   | Thai    | 0–10   | Т        |
| $X_9$                  | F          | Т   | T   | F   | Full | \$     | Т    | F   | Burger  | >60    | F        |
| X <sub>10</sub>        | T          | Т   | T   | Т   | Full | \$\$\$ | F    | T   | Italian | 10–30  | F        |
| <i>X</i> <sub>11</sub> | F          | F   | F   | F   | None | \$     | F    | F   | Thai    | 0–10   | F        |
| <i>X</i> <sub>12</sub> | Т          | Т   | Т   | Т   | Full | \$     | F    | F   | Burger  | 30–60  | Т        |

Attributes:

- Alternate: Is there an alternative restaurant nearby?
- Bar: Is there a bar that makes waiting comfortable?
- ► Fri/Sat: True if current day is Friday or Saturday
- Patrons: None or some people in the restaurant, or is it full?
- Raining: Is it raining outside?
- Reservation: Was a reservation made?
- Estimate: How long is the estimated waiting time?
- ... and some other (self-explanatory)

Assume this is the actual decision tree used by the person in question:

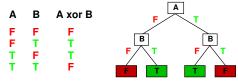


#### Expressiveness

- What kind of logical constraints can DTs express?
- ► Consider conjunction P<sub>i</sub> of attribute values on each path leading to "Yes" and disjunction G = P<sub>1</sub> ∨ ... P<sub>n</sub> over these conjunctions

➡ DTs can represent any formula of propositional logic

► Example: Each truth table row corresponds to one path



Easy to build a tree that is consistent with all examples, but will it be able to generalise?

### Decision Tree Learning Algorithm

- Iteratively build a tree by selecting the "best" attribute and adding descendant nodes for all its values
- If all examples on some branch have the same classification, then no more decision steps are necessary (add leaf node with this classification)
- If some examples are positive and some negative, choose a new attribute to discriminate between them
- If we run out of attributes, examples have same description but different classification (noise)
   use majority vote as a workaround
- If we run out of examples then no data is available for current attribute value; use majority value of parent node

# The Algorithm

| Dec | DISION-TREE-LEARNING( <i>examples</i> , <i>attribs</i> , <i>default</i> )  |
|-----|----------------------------------------------------------------------------|
| 1   | inputs : examples, a set of examples, attribs, a set of attributes         |
| 2   | default, default value for the goal predicate                              |
| 3   | if examples is empty then return default                                   |
| 4   | else if all examples have same classification                              |
| 5   | then return this classification                                            |
| 6   | else if attribs is empty then return MAJORITY-VALUE(examples)              |
| 7   | else                                                                       |
| 8   | $best \leftarrow CHOOSE-ATTRIBUTE(attribs, examples)$                      |
| 9   | <i>tree</i> $\leftarrow$ a new decision tree with root test <i>best</i>    |
| 10  | $m \leftarrow \text{Majority-Value}(examples)$                             |
| 11  | for each value $v_i$ of best do                                            |
| 12  | $examples_i \leftarrow \{ elements of examples with best = v_i \}$         |
| 13  | $subtree \leftarrow Decision-Tree-Learning(examples_i, attribs - best, m)$ |
| 14  | add a branch to tree with label $v_i$ and subtree subtree                  |
| 15  | return tree                                                                |

Inductive Learning Decision Tree Learning Attribute Selection Further Issues/Summary

### Attribute Selection Heuristics

- Best way to obtain compact decision tree: find attributes that split example set into positive/negative examples
- Example:



## Entropy-Based Measures

- Information-theoretic entropy can be used as a measure for amount of information
- If v<sub>1</sub>,... v<sub>n</sub> attribute values with probabilities P(v<sub>i</sub>), information content

$$I(P(v_1),\ldots,P(v_n)) = \sum_{i=1}^n -P(v_i)\log_2 P(v_i)$$

- ► For example: I(0.5,0.5)=1 (bit), I(0.01,0.99)=0.08 (bits)
- Assume we have p positive and n negative examples
   ⇒ classifying a given example correctly requires
   I(<sup>p</sup>/<sub>p+n</sub>, <sup>n</sup>/<sub>p+n</sub>) bits of information

## Information Gain

- Attribute A splits example set into n subsets E<sub>i</sub> containing p<sub>i</sub> positive and n<sub>i</sub> negative examples
- How much information do we still need after this test?
- ▶ Assumption: an example has value v<sub>i</sub> for the attribute in question with probability *P<sub>i</sub>+n<sub>i</sub> P<sub>i</sub>+n P<sub>i</sub>+n</sub>
   <i>P<sub>i</sub>+n P<sub>i</sub>+n P<sub>i</sub>+n P<sub>i</sub>+n P<sub>i</sub>+n P<sub>i</sub>+n P<sub>i</sub>+n P<sub>i</sub>+n</sub>
   <i>P<sub>i</sub>+n P<sub>i</sub>+n P<sub>i</sub>+n P<sub>i</sub>+n P<sub>i</sub>+n P<sub>i</sub>+n</sub>
   <i>P<sub>i</sub>+n P<sub>i</sub>+n P<sub>i</sub>+n</sub>
   <i>P<sub>i</sub>+n P<sub>i</sub>+n</sub>
   <i>P<sub>i</sub>+n P<sub>i</sub>+n</sub>
   <i>P<sub>i</sub>+n P<sub>i</sub>+n</sub>
   <i>P<sub>i</sub>+n</sub>
   <i>P<sub>i</sub>+n P<sub>i</sub>+n</sub>
   <i>P<sub>i</sub>+n</sub>*

$$Remainder(A) = \sum_{i=1}^{n} \frac{p_i + n_i}{p + n} I(\frac{p_i}{p_i + n_i}, \frac{n_i}{p_i + n_i})$$

- ► Gain(A) = I(<sup>p</sup>/<sub>p+n</sub>, <sup>n</sup>/<sub>p+n</sub>) Remainder(A) provides a measure for the information gain provided by A
- ► Heuristics: choose *A* that maximises *Gain*(*A*)

# Overfitting

- Problem: If hypothesis space is large enough, there is a probability of finding "meaningless" regularities
- Example: Date of birth data as a predictor for getting an MSc in Informatics
- If the hypothesis "overfits" the learning data, it may be consistent with examples but useless for generalisation purposes
- A general problem of all learning algorithms
- One way of dealing with overfitting: decision tree pruning (e.g. use significance tests to determine irrelevance of attributes)

### Validation

Typical validation for inductive learning methods:

- Split example data into training set and test set
- Train system with example data
- Evaluate prediction accuracy on test set
- > Optionally: use cross-validation to prevent overfitting
  - Set a portion (e.g. 1/k of the data) aside
  - Conduct k experiments using the "left out" examples as test set (and remaining data as training set)
  - Average performance over k runs

# Critique

- Many functions not easy to represent with DTs (e.g. majority function or mathematical functions)
- Best for problems with limited number of attributes and attribute values
- Assumes examples are unambiguously and completely (no missing data) described/classified (deterministic and fully observable environment)
- ► No use of prior knowledge ➡ learning can be very slow
- Is DTL an (1) an incremental and/or (2) an anytime algorithm?
- Is this an adequate model of real learning?

# Summary

- Inductive Learning: Inference of knowledge from examples
- Decision Trees: A simple yet effective method for attribute-based inductive inference
- Expressiveness vs. complexity, Ockham's Razor
- Entropy-based heuristics for attribute selection
- Problems of noise and overfitting
- Next lecture: Version space learning