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Where are we?

I Last time . . .
I we defined knowledge, KBS and KE
I looked at KE process
I identified important building blocks of KE process.

I Today . . .
I marks the beginning of the “Knowledge Acquisition”

(KA) part of the module
I we will discuss methods for automating KA
I in particular: Decision Tree Learning
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Knowledge Acquisition

I Knowledge Acquisition generally considered bottleneck in
KE process

I Informal methods:
I Expert interviews (today developers 6= experts)
I Analysis of organisational databases and documents
I Independent analysis of domain knowledge (textbooks,

online documents, etc.)

I (Although inevitable) these methods are complex, costly,
and inflexible automation desirable

I Discussion of machine learning methods, in particular:
inductive (symbolic) learning
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Inductive Learning

I Idea: we are provided with examples (x , f (x)) where f (x)
is the correct value of the target function f for input x
and we want to learn f

I Task of inductive inference:

Given a collection of examples of f , return a
function h that approximates f

I h is a hypothesis taken from a hypothesis space H

I (Pure) inductive inference assumes no prior knowledge

I Validation: construct/adjust h using a training set,
evaluate generalisation capabilities on test set
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Inductive Learning

I Inductive learning (IL) is a form of supervised learning:
information about the output value f (x) of x is explicit

I Art of inductive learning: given a set of training
examples, choose the best hypothesis

I h consistent: agrees with all example data seen so far
(not all learning algorithms return consistent hypotheses)

I H defines the range of functions we can use and
determines expressiveness of hypothesis

I Learning problem realisable if f (x) ∈ H (often this is not
known in advance)
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Choosing Hypotheses

I Ockham’s razor: prefer the simplest hypothesis
consistent with the data

I Why is this a reasonable policy?
I Intuitively, why choose complex hypothesis if simple one

does the job?
I There exist more long (i.e. more complex) hypotheses

than short ones
accidental choice of bad hypothesis that is consistent

with data is more unlikely if the hypothesis is simple

I Problem: identifying what simple hypotheses are
I Trade-off: the more expressive the hypothesis space, the

more examples are needed (and the more the complex
learning algorithm)
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Example

I Curve fitting: consider real numbers x and f (x) as data
points (examples)

I Assume H is the set of polynomials, e.g. 5x , 3x2 + 2,
x5 − 3x4 + 2, etc.

I Construct h such that it agrees with f on training set
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Describing IL Methods
I What kind of information do the examples offer?

I How much training data is available? All at once?
I What are their attributes and those attributes’ domains

(boolean, discrete, continuous) ?
I What is the range of possible classifications?
I Do we have to consider noise in the data?

I The hypothesis space:
I Choice of right representation
I Questions of expressiveness vs. complexity
I How can the learning result be used after learning?

I Choosing hypotheses:
I Incremental vs. batch processing of examples
I Refining an initial hypothesis vs. starting with none
I What kind of inductive bias is applied?
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Decision Trees
I Attribute-based classification learning:

I Example input x : situation/object described in terms of
attribute values

I Example output f (x): a discrete-valued classification
decision

I Here: Boolean classification, each example is classified as
positive (true) or negative (false)

I Alternatively: f describes an unknown concept, and all
values of x for which f (x) = true describe the instances
of this concept

I Hypothesis = a decision tree (DT) whose nodes
correspond to tests on attribute values to decide whether
f (x) is true or false
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Example

Assume we are given a set of situations in which a customer
will or will not wait in a restaurant (examples), i.e. the goal
predicate is WillWait(x).

Attributes Target
Alt Bar Fri Hun Pat Price Rain Res Type Est WillWait

X1 T F F T Some $$$ F T French 0–10 T
X2 T F F T Full $ F F Thai 30–60 F
X3 F T F F Some $ F F Burger 0–10 T
X4 T F T T Full $ F F Thai 10–30 T
X5 T F T F Full $$$ F T French >60 F
X6 F T F T Some $$ T T Italian 0–10 T
X7 F T F F None $ T F Burger 0–10 F
X8 F F F T Some $$ T T Thai 0–10 T
X9 F T T F Full $ T F Burger >60 F
X10 T T T T Full $$$ F T Italian 10–30 F
X11 F F F F None $ F F Thai 0–10 F
X12 T T T T Full $ F F Burger 30–60 T
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Example

Attributes:

I Alternate: Is there an alternative restaurant nearby?

I Bar: Is there a bar that makes waiting comfortable?

I Fri/Sat: True if current day is Friday or Saturday

I Patrons: None or some people in the restaurant, or is it
full?

I Raining: Is it raining outside?

I Reservation: Was a reservation made?

I Estimate: How long is the estimated waiting time?

I . . . and some other (self-explanatory)
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Example
Assume this is the actual decision tree used by the person in
question:

No  Yes

No  Yes

No  Yes

No  Yes

No  Yes

No  Yes

None Some Full

>60 30−60 10−30 0−10

No  Yes
Alternate?

Hungry?

Reservation?

Bar? Raining?

Alternate?

Patrons?

Fri/Sat?

WaitEstimate?F T

F T

T

T

F T

TFT

TF
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Expressiveness

I What kind of logical constraints can DTs express?

I Consider conjunction Pi of attribute values on each path
leading to “Yes” and disjunction G = P1 ∨ . . . Pn over
these conjunctions

DTs can represent any formula of propositional logic

I Example: Each truth table row corresponds to one path

FT

A

B

F T

B

A B A xor B

F F F
F T T
T F T
T T F

F

F F

 T

 T  T

I Easy to build a tree that is consistent with all examples,
but will it be able to generalise?
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Decision Tree Learning Algorithm

I Iteratively build a tree by selecting the “best” attribute
and adding descendant nodes for all its values

I If all examples on some branch have the same
classification, then no more decision steps are necessary
(add leaf node with this classification)

I If some examples are positive and some negative, choose
a new attribute to discriminate between them

I If we run out of attributes, examples have same
description but different classification (noise)

use majority vote as a workaround

I If we run out of examples then no data is available for
current attribute value; use majority value of parent node
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The Algorithm
Decision-Tree-Learning(examples, attribs, default)

1 inputs : examples, a set of examples , attribs, a set of attributes
2 default, default value for the goal predicate
3 if examples is empty then return default
4 else if all examples have same classification
5 then return this classification
6 else if attribs is empty then return Majority-Value(examples)
7 else
8 best ← Choose-Attribute(attribs, examples)
9 tree ← a new decision tree with root test best

10 m←Majority-Value(examples)
11 for each value vi of best do
12 examplesi ← { elements of examples with best = vi}
13 subtree ← Decision-Tree-Learning(examplesi , attribs − best,m)
14 add a branch to tree with label vi and subtree subtree
15 return tree
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Attribute Selection Heuristics
I Best way to obtain compact decision tree: find attributes

that split example set into positive/negative examples
I Example:

None Some Full

Patrons?

French Italian Thai Burger

Type?

I “Patrons” provides more information wrt classification
than “Type” does
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Entropy-Based Measures

I Information-theoretic entropy can be used as a
measure for amount of information

I If v1, . . . vn attribute values with probabilities P(vi),
information content

I (P(v1), . . . P(vn)) =
n∑

i=1

−P(vi) log2 P(vi)

I For example: I(0.5,0.5)=1 (bit), I(0.01,0.99)=0.08 (bits)

I Assume we have p positive and n negative examples
classifying a given example correctly requires

I ( p
p+n

, n
p+n

) bits of information
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Information Gain
I Attribute A splits example set into n subsets Ei

containing pi positive and ni negative examples

I How much information do we still need after this test?

I Assumption: an example has value vi for the attribute in
question with probability pi+ni

p+n

measure for remaining “information-to-go”:

Remainder(A) =
n∑

i=1

pi + ni

p + n
I (

pi

pi + ni
,

ni

pi + ni
)

I Gain(A) = I ( p
p+n

, n
p+n

)− Remainder(A) provides a
measure for the information gain provided by A

I Heuristics: choose A that maximises Gain(A)

Informatics UoE Knowledge Engineering 33

Inductive Learning
Decision Tree Learning

Attribute Selection
Further Issues/Summary

Overfitting

I Problem: If hypothesis space is large enough, there is a
probability of finding “meaningless” regularities

I Example: Date of birth data as a predictor for getting an
MSc in Informatics

I If the hypothesis “overfits” the learning data, it may be
consistent with examples but useless for generalisation
purposes

I A general problem of all learning algorithms

I One way of dealing with overfitting: decision tree
pruning (e.g. use significance tests to determine
irrelevance of attributes)
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Validation

Typical validation for inductive learning methods:

I Split example data into training set and test set

I Train system with example data

I Evaluate prediction accuracy on test set

I Optionally: use cross-validation to prevent overfitting
I Set a portion (e.g. 1/k of the data) aside
I Conduct k experiments using the “left out” examples as

test set (and remaining data as training set)
I Average performance over k runs
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Critique

I Many functions not easy to represent with DTs
(e.g. majority function or mathematical functions)

I Best for problems with limited number of attributes and
attribute values

I Assumes examples are unambiguously and completely (no
missing data) described/classified (deterministic and fully
observable environment)

I No use of prior knowledge learning can be very slow

I Is DTL an (1) an incremental and/or (2) an anytime
algorithm?

I Is this an adequate model of real learning?
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Summary

I Inductive Learning: Inference of knowledge from examples

I Decision Trees: A simple yet effective method for
attribute-based inductive inference

I Expressiveness vs. complexity, Ockham’s Razor

I Entropy-based heuristics for attribute selection

I Problems of noise and overfitting

I Next lecture: Version space learning
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