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Where are we?

Last time . . .

I Knowledge Evolution

I Truth Maintenance Systems (JTMS, ATMS)

I Knowledge in Learning

I Explanation-based Learning

Today . . .

I Inductive Logic Programming

Informatics UoE Knowledge Engineering 303

Introduction
An Example

Inductive Logic Programming
Summary

Inductive Logic Programming (ILP)

I Rigorous approach to knowledge-based inductive learning
problem

I Methods for inducing general, first-order theories from
examples

I Using FOL to represent learning hypotheses is useful where
attribute-based mathods (e.g. decision trees) fail

I In particular: ILP allows for capturing relationships between

objects rather than only their attributes

I Hypotheses generated are relatively easy for humans to
understand
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Today’s lecture

I We will first discuss an extended example

I . . . then present a method for top-down ILP

I . . . look at inverse induction methods

I and finally discuss the ability of ILP to make discoveries
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Example

I Recall entailment constraint of general knowledge-based
induction problem:

Background ∧ Hypothesis ∧ Descriptions |= Classifications

I Example: learning family relationships from examples

I Descriptions given by following family tree:

Beatrice

Andrew

EugenieWilliam Harry

CharlesDiana

MumGeorge

PhilipElizabeth MargaretKyddSpencer

Peter

Mark

Zara

Anne Sarah Edward
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Example

I Corresponding logical facts:

Father(Philip, Charles) Father(Philip, Anne)

Mother(Mum, Margaret) Mother(Mum, Elizabeth)

Married(Diana, Charles) Married(Elizabeth, Philip)

Male(Philip) Male(Charles)

Female(Beatrice) Female(Margaret)

. . . . . .

I Target concept to be learned Grandparent, complete set of
classifications would be 20 × 20 = 400 facts of the form

Grandparent(Mum, Charles) Grandparent(Elizabeth, Beatrice)

¬Grandparent(Mum, Harry) ¬Grandparent(Spencer , Peter)

. . . . . .
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Example

I Suppose Background is empty
I One possible hypothesis:

Grandparent(x , y) ⇔ [∃z Mother(x , z) ∧ Mother(z, y)]

∨ [∃z Mother(x , z) ∧ Father(z, y)]

∨ [∃z Father(x , z) ∧ Mother(z, y)]

∨ [∃z Father(x , z) ∧ Father(z, y)]

I What would an attribute-based learning algorithm do here:
I Turn pairs into objects: Grandparent(〈Mum, Charles〉)
I Descriptions hard to represent,

e.g. FirstElementIsMotherOfElizabeth(〈Mum, Charles〉)
I Definition of Grandparent would become a large disjunction

with no generalisation capabilities

I Pincipal advantage of ILP: applicability to relational predicates
can cover much wider range of problems
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I Additional background knowledge can be used to obtain more
concise hypotheses

I Suppose we know
Parent(x , y) ⇔ [Mother(x , y) ∨ Father(x , y)]

I Then we could represent our previous hypothesis as

Grandparent(x , y) ⇔ [∃z Parent(x , z) ∧ Parent(z , y)]

I Even more interesting property of ILP algorithms: creating

new predicates (e.g. Parent)

I Constructive induction: one of the hardest problems in
machine learning, but some ILP methods can do it!

I We discuss two methods: a generalisation of decision-tree
methods & technique based on inverting resolution proofs
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Top-Down Inductive Learning Methods
Inductive Learning with Inverse Induction

FOIL: Top-Down Inductive Learning

I Grow a hypothesis starting from a very general rule, but using
a set of first-order clauses rather than a decision tree
(clauses used are Horn clauses with negation as failure)

I More specialised clauses are generated by adding conditions to
the rule in the following way:

I Literals can be added using predicates (including goal
predicate) with only variables as their arguments

I Each literal must include at least one variable already
appearing in the rule

I Equality and inequality constraints, arithmetic comparisons

I Large branching factor, but typing information may be used to
reduce it

I Heuristic for choice of literal similar to information gain, and
hypotheses that are longer than the total length of examples
are removed
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Top-Down Inductive Learning Methods
Inductive Learning with Inverse Induction

Example

Example: we are trying to learn the Grandfather relation

1. Split examples into positive and negative ones (12/388):
+: 〈Mum, Charles〉, 〈Elizabeth, Beatrice〉

-: 〈Mum, Harry〉, 〈Spencer , Peter〉

2. Construct a set of clauses, each with Grandfather(x , y) as a
head

I Start with true ⇒ Grandfather(x , y)
I This classifies negative examples as true, specialise it
I Generate possible hypotheses by adding a literal to the LHS:

Father(x , y) ⇒ Grandfather(x , y)

Parent(x , y) ⇒ Grandfather(x , y)

Father(x , z) ⇒ Grandfather(x , y)

I Prefer the one that classifies most data correctly (here: the
third one)

3. Repeat these steps until all data is correctly classified
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Inductive Learning with Inverse Resolution

I Basic idea: inverting the normal deductive proof process

I Recall resolution rule:

α ∨ β, ¬β ∨ γ

α ∨ γ

I Resolution is complete, so one must be able to prove

Background ∧ Hypothesis ∧ Descriptions |= Classifications

I If we can “run the proof backward”, we should be able to find
Hypothesis such that proof succeeds

I Inverse single resolution step takes the resolvent and produces
two clauses or the resolvent and one clause and produces one
new clause
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I Take positive example Grandparent(George,Anne) and start
with empty clause, i.e. contradiction and construct the
following proof backwards:

{y/Anne}

Parent(Elizabeth,Anne)

Grandparent(George,Anne)
Grandparent(George,Anne)

Grandparent(George,y)Parent(Elizabeth,y)
 >

{x/George, z/Elizabeth}

Parent(George,Elizabeth)
 >

Parent(z,y) Grandparent(x,y)

> Parent(x,z)

I write ¬Parent(x , z) ∨ ¬Parent(z, y) ∨ Grandparent(z, y) as
Parent(x , z) ∧ ¬Parent(z, y) ⇒ Grandparent(z, y)

I We have a resolution proof that descriptions, hypothesis and
background knowledge entail the classification
Grandparent(George,Anne)
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Making Discoveries with ILP

I Inverse resolution is a complete algorithm for learning
first-order theories (we should always be able to generate
hypothesis from examples)

I Could we discover laws of gravity (quantum mechanics, the
theory of relativity, etc.)?

I In theory, yes, but (as with monkey that might write “Hamlet”
with a typewriter)

I We need better heuristics!

I But ILP is able to invent new predicates, and will often do so
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Making discoveries with ILP

I For example, for the resolvent

¬Father(George, y) ∨ Ancestor(George, y)

we might generate the two clauses
I ¬Father(x , y) ∨ P(x , y)
I ¬P(George, y) ∨ Ancestor(George, y)

in an inverse resolution step (where P is a new predicate)

I A latter step might hypothesize that Mother(x , y) ⇒ P(x , y)
and Father(x , y) ⇒ P(x , y) whereby P would obtain the
meaning of Parent

I Difficult to predict whether such a new predicate will cover a
whole set of observations in a simpler/more elegant way than
before
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Critique

I Search space in generating new hypotheses can be huge,
particularly in inverse induction

I In particular, anything from descriptions, classifications or
background knowledge is a potential candidate

I Some techniques (e.g. use of linear resolution, restricted
representation languages, requiring that all hypothesized
clauses be consistent with each other)

I However, it is the most elegant and impressive inductive
learning method

I Simulates human discovery process while making use of prior
knowledge
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Critique

I Has been successfully used in a number of interesting domains:
I Solving exercises from standard Prolog textbook
I Discovery of rules for protein folding
I Predicting efficacy of drugs from their molecular structures
I NLP: derive complex relations from text

I When ILP succeeds, its advantage is that the discovered rules
can be interpreted by humans
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Summary

I Discussed inductive logic programming

I Exceeds the expressiveness of attribute-based inductive
learning methods by using FOL representations

I Advantage over other knowledge-based learning methods
(e.g. EBL)

I Not only generalises from existing rules, but may discover new
ones altogether!

I Top-down ILP vs. inverse deduction based ILP
I Trade-off between expressiveness and simplicity

I And with this . . .
I we have reached the end of this course!
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