Where are we?

Knowledge Engineering Semester 2, 2004-05

Michael Rovatsos mrovatso@inf.ed.ac.uk

informatics

Lecture 18 – Knowledge Evolution II: Inductive Logic Programming 15th March 2005

Last time ...

- Knowledge Evolution
- Truth Maintenance Systems (JTMS, ATMS)
- Knowledge in Learning
- Explanation-based Learning

Today ...

Inductive Logic Programming

	informatics		informatics
Informatics UoE	Knowledge Engineering 1	Informatics UoE	Knowledge Engineering 303
Introduction		Introduction	
An Example		An Example	
Inductive Logic Programming Summary		Inductive Logic Programming Summary	

Inductive Logic Programming (ILP)

- Rigorous approach to knowledge-based inductive learning problem
- Methods for inducing general, first-order theories from examples
- Using FOL to represent learning hypotheses is useful where attribute-based mathods (e.g. decision trees) fail
- In particular: ILP allows for capturing relationships between objects rather than only their attributes
- Hypotheses generated are relatively easy for humans to understand

Today's lecture

- We will first discuss an extended example
- ... then present a method for top-down ILP
- ... look at inverse induction methods
- and finally discuss the ability of ILP to make discoveries

Example

 Recall entailment constraint of general knowledge-based induction problem:

 $Background \land Hypothesis \land Descriptions \models Classifications$

- ▶ Example: learning family relationships from examples
- Descriptions given by following family tree:

George Millam Spencer MKydd Elizatech M Philip Dana M Carles Anne M Mar, Andres M Sanh Edward William Harry Pare Zam Barnice Eugene

Example

Corresponding logical facts:

ather(Philip, Charles)	Father(Philip, Anne)
Mother(Mum, Margaret)	Mother(Mum, Elizabeth)
Married (Diana, Charles)	Married (Elizabeth, Philip)
Male(Philip)	Male(Charles)
emale(Beatrice)	Female(Margaret)

 Target concept to be learned Grandparent, complete set of classifications would be 20 × 20 = 400 facts of the form

Grandparent(Mum, Charles)	Grandparent(Elizabeth, Beatrice)
¬Grandparent(Mum, Harry)	¬Grandparent(Spencer, Peter)

	informatio	ics
		307

informatics

Example

- Suppose Background is empty
- One possible hypothesis:

 $Grandparent(x, y) \Leftrightarrow [\exists z Mother(x, z) \land Mother(z, y)]$

$$\vee$$
 [$\exists z Mother(x, z) \land Father(z, y)$]

$$\vee$$
 [$\exists z \; Father(x, z) \land Mother(z, y)$]

 $[\exists z \; Father(x, z) \land Father(z, y)]$

- What would an attribute-based learning algorithm do here:
 - Turn pairs into objects: Grandparent((Mum, Charles))
 - Descriptions hard to represent, e.g. FirstElementIsMotherOfElizabeth((Mum, Charles))
 - Definition of Grandparent would become a large disjunction with no generalisation capabilities
- Pincipal advantage of ILP: applicability to relational predicates
 - can cover much wider range of problems

Example

- Additional background knowledge can be used to obtain more concise hypotheses
- Suppose we know Parent(x, y) ⇔ [Mother(x, y) ∨ Father(x, y)]
- Then we could represent our previous hypothesis as

 $Grandparent(x, y) \Leftrightarrow [\exists z Parent(x, z) \land Parent(z, y)]$

- Even more interesting property of ILP algorithms: creating new predicates (e.g. Parent)
- Constructive induction: one of the hardest problems in machine learning, but some ILP methods can do it!
- We discuss two methods: a generalisation of decision-tree methods & technique based on inverting resolution proofs

FOIL: Top-Down Inductive Learning

- Grow a hypothesis starting from a very general rule, but using a set of first-order clauses rather than a decision tree (clauses used are Horn clauses with negation as failure)
- More specialised clauses are generated by adding conditions to the rule in the following way:
 - Literals can be added using predicates (including goal predicate) with only variables as their arguments
 - Each literal must include at least one variable already appearing in the rule
 - Equality and inequality constraints, arithmetic comparisons
- Large branching factor, but typing information may be used to reduce it
- Heuristic for choice of literal similar to information gain, and hypotheses that are longer than the total length of examples are removed

Example

Example: we are trying to learn the Grandfather relation

- 1. Split examples into positive and negative ones (12/388):
 - +: $\langle Mum, Charles \rangle$, $\langle Elizabeth, Beatrice \rangle$
 - -: $\langle Mum, Harry \rangle$, $\langle Spencer, Peter \rangle$

Inductive Logic Progr

- 2. Construct a set of clauses, each with $Grandfather(\boldsymbol{x},\boldsymbol{y})$ as a head
 - Start with true ⇒ Grandfather(x, y)
 - This classifies negative examples as true, specialise it
 - Generate possible hypotheses by adding a literal to the LHS:

 $Father(x, y) \Rightarrow Grandfather(x, y)$

 $Parent(x, y) \Rightarrow Grandfather(x, y)$

$$Father(x, z) \Rightarrow Grandfather(x, y)$$

- Prefer the one that classifies most data correctly (here: the third one)
- 3. Repeat these steps until all data is correctly classified

Inductive Learning with Inverse Resolution

- Basic idea: inverting the normal deductive proof process
- Recall resolution rule:

$$\alpha \lor \beta, \neg \beta \lor \gamma$$

 $\alpha \lor \gamma$

Resolution is complete, so one must be able to prove

 $Background \land Hypothesis \land Descriptions \models Classifications$

- If we can "run the proof backward", we should be able to find Hypothesis such that proof succeeds
- Inverse single resolution step takes the resolvent and produces two clauses or the resolvent and one clause and produces one new clause

Example

 Take positive example Grandparent(George, Anne) and start with empty clause, i.e. contradiction and construct the following proof backwards:

- $$\label{eq:product} \begin{split} & \mathsf{write} \ \neg \textit{Parent}(x,z) \lor \neg \textit{Parent}(z,y) \lor \textit{Grandparent}(z,y) \text{ as } \\ & \textit{Parent}(x,z) \land \neg \textit{Parent}(z,y) \Rightarrow \textit{Grandparent}(z,y) \end{split}$$
- We have a resolution proof that descriptions, hypothesis and background knowledge entail the classification Grandparent(George, Anne)

1.4210214-

Making Discoveries with ILP

Inductive Logic Program

Inverse resolution is a complete algorithm for learning first-order theories (we should always be able to generate hypothesis from examples)

- Could we discover laws of gravity (quantum mechanics, the theory of relativity, etc.)?
 - In theory, yes, but (as with monkey that might write "Hamlet" with a typewriter)

Top-Down Inductive Learning Methods Inductive Learning with Inverse Induction

- We need better heuristics!
- But ILP is able to invent new predicates, and will often do so

Making discoveries with ILP

For example, for the resolvent

 \neg Father(George, y) \lor Ancestor(George, y)

we might generate the two clauses

- ▶ \neg Father(x, y) \lor P(x, y)
- ¬P(George, y) ∨ Ancestor(George, y)

in an inverse resolution step (where P is a new predicate)

- A latter step might hypothesize that Mother(x, y) ⇒ P(x, y) and Father(x, y) ⇒ P(x, y) whereby P would obtain the meaning of Parent
- Difficult to predict whether such a new predicate will cover a whole set of observations in a simpler/more elegant way than before

informatics			informatics		
315	Knowledge Engineering	Informatics UoE	314	Knowledge Engineering	Informatics UoE
		Introduction			
f		An Example			An Example
f		Inductive Logic Programming			Inductive Logic Programming
		Summary			Summary

Critique

- Search space in generating new hypotheses can be huge, particularly in inverse induction
 - In particular, anything from descriptions, classifications or background knowledge is a potential candidate
 - Some techniques (e.g. use of linear resolution, restricted representation languages, requiring that all hypothesized clauses be consistent with each other)
- However, it is the most elegant and impressive inductive learning method
 - Simulates human discovery process while making use of prior knowledge

Critique

- Has been successfully used in a number of interesting domains:
 - Solving exercises from standard Prolog textbook
 - Discovery of rules for protein folding
 - Predicting efficacy of drugs from their molecular structures
 - NLP: derive complex relations from text
- When ILP succeeds, its advantage is that the discovered rules can be interpreted by humans

Summary

- Discussed inductive logic programming
- Exceeds the expressiveness of attribute-based inductive learning methods by using FOL representations
- Advantage over other knowledge-based learning methods (e.g. EBL)
 - Not only generalises from existing rules, but may discover new ones altogether!
- Top-down ILP vs. inverse deduction based ILP
 - Trade-off between expressiveness and simplicity
- ► And with this ...
 - we have reached the end of this course!

Informatics UoE Knowledge Engineering

informatics