
Introduction
An Example

Inductive Logic Programming
Summary

Knowledge Engineering
Semester 2, 2004-05

Michael Rovatsos
mrovatso@inf.ed.ac.uk

Lecture 18 – Knowledge Evolution II: Inductive Logic Programming
15th March 2005

Informatics UoE Knowledge Engineering 1

Introduction
An Example

Inductive Logic Programming
Summary

Where are we?

Last time . . .

I Knowledge Evolution

I Truth Maintenance Systems (JTMS, ATMS)

I Knowledge in Learning

I Explanation-based Learning

Today . . .

I Inductive Logic Programming

Informatics UoE Knowledge Engineering 303

Introduction
An Example

Inductive Logic Programming
Summary

Inductive Logic Programming (ILP)

I Rigorous approach to knowledge-based inductive learning
problem

I Methods for inducing general, first-order theories from
examples

I Using FOL to represent learning hypotheses is useful where
attribute-based mathods (e.g. decision trees) fail

I In particular: ILP allows for capturing relationships between

objects rather than only their attributes

I Hypotheses generated are relatively easy for humans to
understand

Informatics UoE Knowledge Engineering 304

Introduction
An Example

Inductive Logic Programming
Summary

Today’s lecture

I We will first discuss an extended example

I . . . then present a method for top-down ILP

I . . . look at inverse induction methods

I and finally discuss the ability of ILP to make discoveries

Informatics UoE Knowledge Engineering 305

Introduction
An Example

Inductive Logic Programming
Summary

Example

I Recall entailment constraint of general knowledge-based
induction problem:

Background ∧ Hypothesis ∧ Descriptions |= Classifications

I Example: learning family relationships from examples

I Descriptions given by following family tree:

Beatrice

Andrew

EugenieWilliam Harry

CharlesDiana

MumGeorge

PhilipElizabeth MargaretKyddSpencer

Peter

Mark

Zara

Anne Sarah Edward

Informatics UoE Knowledge Engineering 306

Introduction
An Example

Inductive Logic Programming
Summary

Example

I Corresponding logical facts:

Father(Philip, Charles) Father(Philip, Anne)

Mother(Mum, Margaret) Mother(Mum, Elizabeth)

Married(Diana, Charles) Married(Elizabeth, Philip)

Male(Philip) Male(Charles)

Female(Beatrice) Female(Margaret)

.

I Target concept to be learned Grandparent, complete set of
classifications would be 20 × 20 = 400 facts of the form

Grandparent(Mum, Charles) Grandparent(Elizabeth, Beatrice)

¬Grandparent(Mum, Harry) ¬Grandparent(Spencer , Peter)

.

Informatics UoE Knowledge Engineering 307

Introduction
An Example

Inductive Logic Programming
Summary

Example

I Suppose Background is empty
I One possible hypothesis:

Grandparent(x , y) ⇔ [∃z Mother(x , z) ∧ Mother(z, y)]

∨ [∃z Mother(x , z) ∧ Father(z, y)]

∨ [∃z Father(x , z) ∧ Mother(z, y)]

∨ [∃z Father(x , z) ∧ Father(z, y)]

I What would an attribute-based learning algorithm do here:
I Turn pairs into objects: Grandparent(〈Mum, Charles〉)
I Descriptions hard to represent,

e.g. FirstElementIsMotherOfElizabeth(〈Mum, Charles〉)
I Definition of Grandparent would become a large disjunction

with no generalisation capabilities

I Pincipal advantage of ILP: applicability to relational predicates
can cover much wider range of problems

Informatics UoE Knowledge Engineering 308

Introduction
An Example

Inductive Logic Programming
Summary

Example

I Additional background knowledge can be used to obtain more
concise hypotheses

I Suppose we know
Parent(x , y) ⇔ [Mother(x , y) ∨ Father(x , y)]

I Then we could represent our previous hypothesis as

Grandparent(x , y) ⇔ [∃z Parent(x , z) ∧ Parent(z , y)]

I Even more interesting property of ILP algorithms: creating

new predicates (e.g. Parent)

I Constructive induction: one of the hardest problems in
machine learning, but some ILP methods can do it!

I We discuss two methods: a generalisation of decision-tree
methods & technique based on inverting resolution proofs

Informatics UoE Knowledge Engineering 309

Introduction
An Example

Inductive Logic Programming
Summary

Top-Down Inductive Learning Methods
Inductive Learning with Inverse Induction

FOIL: Top-Down Inductive Learning

I Grow a hypothesis starting from a very general rule, but using
a set of first-order clauses rather than a decision tree
(clauses used are Horn clauses with negation as failure)

I More specialised clauses are generated by adding conditions to
the rule in the following way:

I Literals can be added using predicates (including goal
predicate) with only variables as their arguments

I Each literal must include at least one variable already
appearing in the rule

I Equality and inequality constraints, arithmetic comparisons

I Large branching factor, but typing information may be used to
reduce it

I Heuristic for choice of literal similar to information gain, and
hypotheses that are longer than the total length of examples
are removed

Informatics UoE Knowledge Engineering 310

Introduction
An Example

Inductive Logic Programming
Summary

Top-Down Inductive Learning Methods
Inductive Learning with Inverse Induction

Example

Example: we are trying to learn the Grandfather relation

1. Split examples into positive and negative ones (12/388):
+: 〈Mum, Charles〉, 〈Elizabeth, Beatrice〉

-: 〈Mum, Harry〉, 〈Spencer , Peter〉

2. Construct a set of clauses, each with Grandfather(x , y) as a
head

I Start with true ⇒ Grandfather(x , y)
I This classifies negative examples as true, specialise it
I Generate possible hypotheses by adding a literal to the LHS:

Father(x , y) ⇒ Grandfather(x , y)

Parent(x , y) ⇒ Grandfather(x , y)

Father(x , z) ⇒ Grandfather(x , y)

I Prefer the one that classifies most data correctly (here: the
third one)

3. Repeat these steps until all data is correctly classified

Informatics UoE Knowledge Engineering 311

Introduction
An Example

Inductive Logic Programming
Summary

Top-Down Inductive Learning Methods
Inductive Learning with Inverse Induction

Inductive Learning with Inverse Resolution

I Basic idea: inverting the normal deductive proof process

I Recall resolution rule:

α ∨ β, ¬β ∨ γ

α ∨ γ

I Resolution is complete, so one must be able to prove

Background ∧ Hypothesis ∧ Descriptions |= Classifications

I If we can “run the proof backward”, we should be able to find
Hypothesis such that proof succeeds

I Inverse single resolution step takes the resolvent and produces
two clauses or the resolvent and one clause and produces one
new clause

Informatics UoE Knowledge Engineering 312

Introduction
An Example

Inductive Logic Programming
Summary

Top-Down Inductive Learning Methods
Inductive Learning with Inverse Induction

Example

I Take positive example Grandparent(George,Anne) and start
with empty clause, i.e. contradiction and construct the
following proof backwards:

{y/Anne}

Parent(Elizabeth,Anne)

Grandparent(George,Anne)
Grandparent(George,Anne)

Grandparent(George,y)Parent(Elizabeth,y)
 >

{x/George, z/Elizabeth}

Parent(George,Elizabeth)
 >

Parent(z,y) Grandparent(x,y)

> Parent(x,z)

I write ¬Parent(x , z) ∨ ¬Parent(z, y) ∨ Grandparent(z, y) as
Parent(x , z) ∧ ¬Parent(z, y) ⇒ Grandparent(z, y)

I We have a resolution proof that descriptions, hypothesis and
background knowledge entail the classification
Grandparent(George,Anne)

Informatics UoE Knowledge Engineering 313

Introduction
An Example

Inductive Logic Programming
Summary

Top-Down Inductive Learning Methods
Inductive Learning with Inverse Induction

Making Discoveries with ILP

I Inverse resolution is a complete algorithm for learning
first-order theories (we should always be able to generate
hypothesis from examples)

I Could we discover laws of gravity (quantum mechanics, the
theory of relativity, etc.)?

I In theory, yes, but (as with monkey that might write “Hamlet”
with a typewriter)

I We need better heuristics!

I But ILP is able to invent new predicates, and will often do so

Informatics UoE Knowledge Engineering 314

Introduction
An Example

Inductive Logic Programming
Summary

Top-Down Inductive Learning Methods
Inductive Learning with Inverse Induction

Making discoveries with ILP

I For example, for the resolvent

¬Father(George, y) ∨ Ancestor(George, y)

we might generate the two clauses
I ¬Father(x , y) ∨ P(x , y)
I ¬P(George, y) ∨ Ancestor(George, y)

in an inverse resolution step (where P is a new predicate)

I A latter step might hypothesize that Mother(x , y) ⇒ P(x , y)
and Father(x , y) ⇒ P(x , y) whereby P would obtain the
meaning of Parent

I Difficult to predict whether such a new predicate will cover a
whole set of observations in a simpler/more elegant way than
before

Informatics UoE Knowledge Engineering 315

Introduction
An Example

Inductive Logic Programming
Summary

Critique

I Search space in generating new hypotheses can be huge,
particularly in inverse induction

I In particular, anything from descriptions, classifications or
background knowledge is a potential candidate

I Some techniques (e.g. use of linear resolution, restricted
representation languages, requiring that all hypothesized
clauses be consistent with each other)

I However, it is the most elegant and impressive inductive
learning method

I Simulates human discovery process while making use of prior
knowledge

Informatics UoE Knowledge Engineering 316

Introduction
An Example

Inductive Logic Programming
Summary

Critique

I Has been successfully used in a number of interesting domains:
I Solving exercises from standard Prolog textbook
I Discovery of rules for protein folding
I Predicting efficacy of drugs from their molecular structures
I NLP: derive complex relations from text

I When ILP succeeds, its advantage is that the discovered rules
can be interpreted by humans

Informatics UoE Knowledge Engineering 317

Introduction
An Example

Inductive Logic Programming
Summary

Summary

I Discussed inductive logic programming

I Exceeds the expressiveness of attribute-based inductive
learning methods by using FOL representations

I Advantage over other knowledge-based learning methods
(e.g. EBL)

I Not only generalises from existing rules, but may discover new
ones altogether!

I Top-down ILP vs. inverse deduction based ILP
I Trade-off between expressiveness and simplicity

I And with this . . .
I we have reached the end of this course!

Informatics UoE Knowledge Engineering 318

