

Knowledge Engineering Semester 2, 2004-05

Michael Rovatsos mrovatso@inf.ed.ac.uk

informatics

Lecture 13 – Distributed Rational Decision-Making 25th February 2005

Where are we?

Last time . . .

- Agent interaction & communication
- Speech act theory
- Interaction Protocols
- But how should agents behave in interaction situations?

Today ...

Distributed Rational Decision-Making

	informatics	is information		
Informatics UoE	Knowledge Engineering 1	Informatics UoE	Knowledge Engineering	222
Basics		Basics		
Decision Theory Game Theory		Decision Theory Game Theory		
Electronic Auctions		Electronic Auctions		
		Summary		

informatica

Basic Considerations

- In entirely cooperative systems, we can impose constrains on agent behaviour to achieve global system objective
- In open systems, this is impossible!
 - · We do not own all the agents in the system
 - We don't know anything about their internal design
 - Ultimately, they might be malicious
- But there is (some) hope ... if we assume agents to be rational
- In this case, they can be considered "selfish", rather than "malevolent" or "randomly behaving"
- Question: How can we design interaction mechanisms that achieve some global objective despite agents being selfish?

Decision Theory

- A theory of (single-agent) rational decision making
- Based on a set of alternatives, what is the optimal decision an agent may make?
- Informally speaking, this depends on how desirable an alternative see and how likely we think it is
 - decision theory = utility theory + probability theory
- Let O = {o₁,...o_n} a set of possible outcomes (e.g. possible "runs" of the system until final states are reached)
- A preference ordering ≻_i⊆ O × O for agent i is an antisymmetric, transitive relation on O, i.e.
 - ▶ $o \succ_i o' \Rightarrow o' \neq_i o$ ▶ $o \succ_i o' \land o' \succ o'' \Rightarrow o \succ_i o''$
- Such an ordering can be used to express strict preferences of an agent over O (write ≿_i if also reflexive, i.e. o ≿_i o)

Decision Theory

Preferences are often expressed through a utility function u_i : O ⇒ ℝ :

$$u_i(o) > u_i(o') \Leftrightarrow o \succ o', \quad u_i(o) \ge u_i(o') \Leftrightarrow o \succeq o'$$

Principle of expected utility maximisation:

$$a^* = \arg \max_{a \in A} \sum_{o \in O} P(o|a)u(o|a)$$

where $a \in A$ are the actions/decisions an agent may take

- Generally accepted criterion, but also problems:
 - Incomplete information (wrt outcomes, probabilities, preferences)
 - Risk aversion attitude (value of additional utility depending on current "wealth", e.g. money)
 - Quantification problem (optimal=maximising average utility?, comparability of different utility values)

Game Theory

- Application of decision-theoretic principles to interaction among several agents
- Basic model: agents perform simultaneous actions (potentially over several stages), the actual outcome depends on the combination of action chosen by all agents
- Normal-form games: final result reached in single step (in contrast to extensive-form games)
 - Agents $\{1, \ldots, n\}$, S_i =set of (pure) strategies for agent i, $S = \times_{i=1}^n S_i$ space of joint strategies
 - Utility functions u_i : S → ℝ map joint strategies to utilities
 - A probability distribution σ_i: S_i → [0, 1] is called a mixed strategy of agent i (can be extended to joint strategies)
- Game theory is concerned with the study of this kind of games (in particular developing solution concepts for games)

comparability of different	utility values) Mor	monics		inform	otics
Informatics UoE	Knowledge Engineering	225	Informatics UoE	Knowledge Engineering	226
					_
Game Theory	Simple Solution Concepts Examples Game Theory and Multiagent Systems		Game Theory	Simple Solution Concepts Examples Game Theory and Multiagent Systems	

Dominance and Best Response Strategies

- Two simple and very common criteria for rational decision making in games
- Strategy s ∈ S_i is said to dominate s' ∈ S_i iff

$$\forall s_{-i} \in S_{-i}$$
 $u_i(s, s_{-i}) \ge u_i(s', s_{-i})$

 $(s_{-i} = (s_1, ..., s_{i-1}, s_{i+1}, ..., s_n)$, same abbrev. used for S)

- Dominated strategies can be safely deleted from the set of strategies, a rational agent will never play them
- Some games are solvable in dominant strategy equilibrium, i.e. all agents have a single (pure/mixed) strategy that dominates all other strategies

Dominance and Best Response Strategies

Strategy s ∈ S_i is a best response to strategies s_{-i} ∈ S_{-i} iff

 $\forall s' \in S_i, s' \neq s \quad u_i(s, s_{-i}) \ge u_i(s', s_{-i})$

- Weaker notion, only considers optimal reaction to a specific behaviour of other agents
- Unlike dominant strategies, best-response strategies (trivially) always exist
- Strict versions of the above relations require that ">" holds' for at least one s'
- ▶ Replace s_i/s_{-i} above by σ_i/σ_{-i} and you can extend the definitions for dominant/best-response strategies to mixed strategies

Nash Equilibrium

- Nash (1951) defined the most famous equilibrium concept for normal-form games
- A joint strategy $s \in S$ is said to be in (pure-strategy) Nash equilibrium (NE), iff

 $\forall i \in \{1, \dots, n\} \forall s'_i \in S_i \quad u_i(s_i, s_{-i}) > u_i(s'_i, s_{-i})$

- Intuitively, this means that no agent has an incentive to deviate from this strategy combination
- Very appealing notion, because it can be shown that a (mixed-strategy) NE always exists
- But also some problems:
 - Not always unique, how to agree on one of them?
 - Proof of existence does not provide method to actually find it
 - Many games do not have pure-strategy NE

Example

Two men are collectively charged with a crime and held in separate cells, with no way of meeting or communicating. They are told that:

- if one confesses and the other does not, the confessor will be freed, and the other will be jailed for three years:
- if both confess, then each will be jailed for two years.

Both prisoners know that if neither confesses, then they will each be jailed for one year.

informatica

Example

The Prisoner's Dilemma: Nash equilibrium is not Pareto efficient (or: no one will dare to cooperate although mutual cooperation is preferred over mutual defection)

2	2 C	D
1		
С	(3,3)	(0,5)
D	(5,0)	(1,1)

Problem: $DC \succ CC \succ DD \succ CD$ (from first player's point of view) and $u(CC) > \frac{u(DC)+u(CD)}{2}$

The Evolution of Cooperation?

- Typical non-zero sum game: there is a potential for cooperation but how should it emerge among self-interested agents?
- This situation occurs in many real life cases:
 - Nuclear arms race
 - Tragedy of the commons
 - "Free rider" problems
- In (infinitely) iterated case, cooperation is the rational choice in the PD (but "backward induction" problem)
- Axelrod's tournament (1984): Iterated Prisoner's Dilemma with lots of strategies (how to play against different opponents?)
- TIT FOR TAT strategy (don't be envious, be nice, retaliate appropriately, don't hold grudges) very successful

Example

The Coordination Game: No temptation to defect, buy two equilibria (hard to know which one will be chosen by other party)

Examples

	2	A	В
1			
А		(1,1)	(-1,-1)
В		(-1,-1)	(1,1)

Game Theory & Multiagent Systems

- Game theory = foundation for mechanism design
- Design of negotiation protocols for automated negotiation (i.e. coordination in the presence of a conflict of interest)
- Find protocols that satisfy certain properties
- Individual Rationality: for all agents, the negotiated solution should offer at least as much utility as not participating in the protocol
 - Necessary precondition for any viable protocol
- Social Welfare: the sum of all agents' utilities under some solution
 - Somewhat arbitrary, inter-agent utilities might not be comparable
- Pareto Efficiency
 - No agent could be better off than in current solution without at least one other agent being worse off

	informatics		withs		informatics
Informatics UoE	Knowledge Engineering	233	Informatics UoE	Knowledge Engineering	234
Game Theory	Simple Solution Concepts Examples Game Theory and Multiagent Systems		Game Theory	Simple Solution Concepts Examples Game Theory and Multiagent Systems	

informatica

Criteria for Negotiation Protocols

- Stability: motivation for agents to behave in the desired manner
 - Dominant strategy equilibrium: very stable but does not always exist
 - Nash equilibrium
 - Pure Nash equilibria do not exist in all games
 - There might be more than one. How to pick the right one?
 - Sometimes not Pareto efficient
 - Not stable against deviation of a group of agents in coordinated manner
 - Doesn't necessarily hold in later stages of a sequential game
 - Computational efficiency
 - Distribution, communication efficiency

Revelation Principle

- An example of the kind thing that can be proven using game theory
- Let Θ = {θ₁,...,θ_n} "types" of agents *i* that totally determine their preferences, f : Θ → O a social choice function that calculates social outcome given agent types
- Problem: agents might not reveal their types truthfully
- A protocol implements f if the protocol has an equilibrium (dominant strategy/Nash) whose outcome is the same as that of f if agents revealed types truthfully
- Revelation principle:

Suppose protocol p implements f in Nash/DS equilibrium. Then f is implementable in Nash/DS equilibrium via a single-step protocol where agents reveal their entire types truthfully.

Revelation Principle

- Proof idea:
 - add additional step to p in which agents' potentially insincere strategies are computed automatically
 - simulate original protocol after this step
 - motivation for agents to reveal their true type in single step (protocol lies optimally on agents' behalf)
- Significance: enables us to restrict search for desirable protocol to ones where truthful revelation occurs in one step
- However, only existence result
 - What if there are other equilibria?
 - What if "lying" step is hard to compute?
 - What if agents don't play equilibrium strategies?

Electronic Auctions

- Auctions = preference-based method for allocating goods
- Most common types of auctions:
 - English (first-price open-cry)
 - Dutch (reverse)
 - First-price sealed bid
 - Vickrey auction (second-price sealed bid)
- Additional variations depending on following characteristics:
 - private-value vs. public-value (also: correlated value)
 - risk-neutral, risk-seeking, risk-averse bidders/auctioneer
- Some interesting issues/problems:
 - Lying bidders
 - Lying auctioneer
 - Bidder collusion
 - Incentive for speculation

informatica

The English Auction (EA)

The English Auction (EA)

- Each bidder raises freely his bid (in public), auction ends if no bidder is willing to raise his bid anymore
- Bidding process public => in correlated auctions, it can be worthwhile to counter-speculate
- In correlated auctions, often auctioneer increases price at constant/appropriate rate, also use of reservation prices
- Dominant strategy in private-value EA: bid a small amount above one's own valuation

Advantages:

- Truthful bidding is individually rational & stable
- No lying auctioneer
- Disadvantages:
 - Can take long to terminate in correlated/common value auctions
 - Information is given away by bidding in public
 - Use of shills (in correlated-value EA) and "minimum price bids" possible
 - Bidder collusion self-enforcing (once agreement has been reached, it is safe to participate in a coalition) and identification of partners easily possible

Dutch/First-Price Sealed Bid Auctions

- Dutch (descending) auction: seller continuously lowers prices until one of the bidders accepts the price
- First-price sealed bid: bidders submit bids so that only auctioneer can see them, highest bid wins (only one round of bidding)
- DA/FPSB strategically equivalent (no information given away during auction, highest bid wins)
- Advantages:
 - Efficient in terms of real time (especially Dutch)
 - No information is given away during auction
 - Bidder collusion not self-enforcing, and bidders have to identify each other

Dutch/First-Price Sealed Bid Auctions

- Disadvantages:
 - No dominant strategy, individually optimal strategy depends on assumptions about others' valuations
 - Ideally bid less than own valuation but just enough to win
 - Incentive to counter-speculate
 - no incentive to bid truthfully
 - This might incur loss of computational resources in the system
 - Lying auctioneer

Informatica

The Vickrey Auction (VA)

- Second-price sealed bid: Highest bidder wins, but pays price of second-highest bid
- Advantages:
 - Truthful bidding is dominant strategy
 - No incentive for counter-speculation
 - Computational efficiency
- Disadvantages:
 - Bidder collusion self-enforcing
 - Lying auctioneer
- Unfortunately, VA is not very popular in real life
- But very successful in computational multiagent systems

Further Issues

- Pareto efficiency: all protocols alocate auction item to the bidder who values it most (in isolated private value/common value auctions)
 - But this result requires risk-neutrality if there is some uncertainty about own valuations
- Revenue equivalence in terms of expected revenue among all protocols if valuations independent, bidders risk-neutral and auction is private value
- Winner's curse in correlated/common value auctions
 - If I win, I always know I won't get to re-sell at the same price, because others value the goods less!

Further Issues

- Some properties of protocols change
 - · if there is uncertainty about own valuations
 - if one can pay to obtain information about others' valuations
 - if we are looking at sequential (multiple) auctions
- Undesirable private information revelation
 - Example: truthful bidding in EA/VA may lead sub-contractors to re-negotiate rates after finding out that price was lower than they thought
- In terms of communication, auctions are not a very expressive method of negotiation!
 - · Solely concerned with determining a selling price for some item

Other Methods

- Voting: determining an optimal "social choice" given individual preferences
- Bargaining: different set of possible agreements ("deals"), but conflict of interest regarding these
- Market Equilibrium Mechanisms: how to derive optimal production and consumption plans in a market
- Contract Nets: determining optimal task allocations among a set of agents
- Coalition Formation: how to find the best coalition structure in an agent society (if different coalitions can ensure different payoffs) and how to reward coalition participants

informatics			es informáti		
Informatics UoE	Knowledge Engineering	245	Informatics UoE	Knowledge Engineering	246
Basics Decision Theory Game Theory Electronic Auctions Summary	Auction Protocols Further Issues		Basics Decision Theory Game Theory Electronic Auctions Summary		

the School of state

Critique

While game-theoretic/decision-theoretic approaches are currently very popular, there is also some criticism:

- How far can we get in terms of cooperation while assuming purely self-interested agents?
 - Good for economic interactions but how about other social processes?
 - In a sense, these approaces assume "worst case" of possible agent behaviour and disregard higher (more fragile) levels of cooperation
- Although mathematically rigorous,
 - ... the proofs only work under simplifying assumptions
 - ... often don't consider irrational behaviour
 - ... can only deal with a "utilitised" world
- Relationship to goal-directed, rational reasoning (e.g. BDI) and to deductive reasoning complex and not entirely clear

Summary

- Discussed rational decision-making mechanisms in societies of self-interested agents
- Idea of "mechanism design": design protocols that ensure global properties despite agents' self-interest under certain rationality assumptions
- Discussed foundations and fundamental problems of decision theory and game theory
- Looked at auctions as a particular method for automated negotiation
- Next time: Semantic Web (probably)