Knowledge Engineering Semester 2, 2004-05

Michael Rovatsos mrovatso@inf.ed.ac.uk

Lecture 12 – Agent Interaction & Communication 22th February 2005

Introduction

Speech Act Theory Agent Communication Languages Interaction Protocols Summary

Where are we?

Last time ...

- Agent architectures
- Deliberative vs. reactive architectures
- The BDI model of agency
- Subsumption architecture
- Hybrid approaches: Touring Machines/InteRRaP

Today ...

Agent interaction & communication

Categories of Agent Interaction

- Non-/Quasi-communicative interaction:
 - Shared environment (interaction via resource/capability sharing)
 - "Pheromone" communication (ant algorithms)
- Communication:
 - Information exchange: sharing knowledge, exchanging views
 - Collaboration, distributed planning: optimising use of resources and distribution of tasks, coordinating execution
 - Negotiation: reaching agreement in presence of conflict
 - (Human-machine dialogue, reporting errors, etc.)

Speech Act Theory

- Most multiagent approaches to communication based on speech act theory
- Underlying idea: treat communication in a similar way as non-communicative action
- Pragmatic theory of language, concerned with how communication is used in the context of agent activity
- Austin (1962): Utterances are produced like "physical" actions to change the state of the world
- Speech act theory is a theory of how utterances are used to achieve one's intentions

Speech Act Theory

- A speech act can be conceptualised to consist of:
 - 1. Locution (physical utterance)
 - 2. Illocution (intended meaning)
 - 3. Perlocution (resulting action)
- Two parts of a speech act:
 - Performative = communicative verb used to distinguish between different "illocutionary forces"
 - Examples: promise, request, purport, insist, demand, etc.
 - Propositional content = what the speech act is about
- Example:
 - Performative: request/inform/enquire
 - Propositional content: "the window is open"

Speech Act Theory

▶ Searle (1972) identified following categories of performatives:

- assertives/representatives (informing, making a claim)
- directives (requesting, commanding)
- commissives (promising, refusing)
- declaratives (effecting change to state of the world)
- expressives (expressing mental states)
- Ambiguity problems:
 - "Please open the window!"
 - "The window is open."
 - "I will open the window."
 - ▶ ...
- Debate as to whether this (or any!) typology is appropriate (and innate to human thinking)

Agent Communication Languages

- Agent communication languages (ACLs) define standards for messages exchanged among agents
- Usually based on speech act theory, messages are specified by:
 - Sender/receiver(s) of the message
 - Performative to describe intended actions
 - Propositional content in some content language
- Most commonly used languages:
 - KQML/KIF
 - FIPA-ACL (today de-facto standard)
- FIPA=Foundation for Intelligent Physical Agents"

KQML/KIF FIPA ACL

KQML/KIF

- KQML Knowledge Query and Manipulation Language
- An "outer" language, defines various acceptable performatives
- Example performatives:
 - ask-if ('is it true that...')
 - perform ('please perform the following action...')
 - tell ('it is true that...')
 - reply ('the answer is ...')
- Message format:

(performative

:sender	<word></word>	:receiver	<word></word>
:in-reply-to	<word></word>	:reply-with	<word></word>
:language	<word></word>	:ontology	<word></word>
:content	<expression>)</expression>		

KQML/KIF FIPA ACL

Example

:sender	Agent1		
:receiver	Agent2		
:in-reply-to	ID1		
:reply-with	ID2		
:language	KQML		
:ontology	kqml-ontology		
:content	(ask		
	:sender	Agent1	
	:receiver	Agent3	
	:language	Prolog	
	:ontology	blocks-world	
	:content	"on(X,Y)"))	

KQML/KIF

- ► KQML does not say anything about *content* of messages → need content languages
- KIF Knowledge Interchange Format: a logical language to describe knowledge (first-order logic with some extensions/restrictions)

Examples:

- (interested joe '(salary ,?x ,?y ,?z))
- Can be also used to describe ontology referred to by interacting agents

kqml/kif Fipa Acl

FIPA ACL

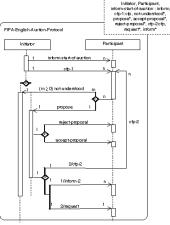
- In recent years, FIPA started work on a program of agent standards – the centrepiece is an ACL called FIPA-ACL
- Basic structure is quite similar to KQML (performative, "housekeeping", content)
- "Inform" and "Request" basic performatives, all others (about 20) are macro definitions (defined in terms of these)
- The meaning of inform and request is defined in two parts:
 - Pre-condition, i.e. what must be true in order for the speech act to succeed
 - "Rational effect", i.e. what the sender of the message hopes to bring about
- Example:
 - (inform :sender agent1 :receiver agent5
 - :content (price good200 150)
 - :language sl :ontology hpl-auction)

ACL Semantics

- One possibility to define semantics of speech acts is through constraints on mental states of participants
- A possible semantics for request $request(s, h, \phi)$
 - Pre-conditions (before utterance):
 - s believes h can do φ
 (you don't ask someone to do something unless you think they can do it)
 - s believes h believe h can do φ
 (you don't ask someone unless they believe they can do it)
 - s believes s want φ
 (you don't ask someone unless you want it!)
 - Post-conditions (after utterance):
 - h believes s believe s wants φ
 (the effect is to make them aware of your desire)

Problems

- Impossible for the speaker to enforce those beliefs on the hearer!
- More generally: No way to verify mental state of agent on the grounds of its (communicative) behaviour
- Alternative approaches use notion of social commitments
 - "A debtor a is indebted to a creditor b to perform action c (before d)"
 - Often public commitment stores are used to track status of generated commitments
 - At least (non)fulfillment of commitments can be verified
- This is a fundamental problem of all mentalistic approaches to communication semantics!


Interaction Protocols

- ACLs define the syntax and semantics of individual utterances
- But they don't specify what agent conversations look like
- This is done by interaction protocols for different types of agent dialogues
- Interaction protocols govern the exchange of a series of messages among agents
- Restrict the range and ordering of possible messages (effectively define patterns of admissible sequences of messages)
- Often formalised using finite-state diagrams or "interaction diagrams" in FIPA-AgentUML
 - Define agent roles, message patterns, semantic constrains

Basics The Contract-Net Protocol

Example

Interaction protocol for the English ("first-price open-cry") auction in FIPA-AgentUML

Basics The Contract-Net Protocol

Protocol Design

Described as a six-step process (Koning, Francois & Demazeau 1999):

- 1. Describe the interaction capabilities of the agents in use
- 2. Clarify the types of messages involved
- 3. Describe the agents' behaviours
- 4. Explain the possible message sequences between agents
- 5. Clarify the various internal agent states
- 6. Establish the diagram of the protocol (if AgentUML is used)

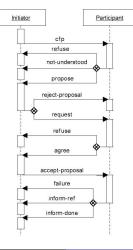
Contract-Net Protocol

- One of the oldest, most widely used agent interaction protocols
- A manager agent announces one or several tasks, agents place bids for performing them
- Task is assigned by manager according to evaluation function applied to agents' bids (e.g. choose cheapest agent)
- Idea of exploiting local cost function (agents' private knowledge) for distributed optimal task allocation
- Even in purely cooperative settings, decentralisation can improve global performance
- A typical example of "how it can make sense to agentify a system"
- Successfully applied to different domains (e.g. transport logistics)

Basics The Contract-Net Protocol

Contract-Net Protocol

Basics The Contract-Net Protocol


Problem

- Many protocol definitions do not include a specification of participants' mental states during execution
- Trade-off between being agent design task and protocol design task
 - Ensure global objectives are met
 - Don't be too prescriptive about internal design of agents!
- Example: The "Eager Bidder Problem"
 - Assume several manager agents at a time
 - Individual agents might over-commit despite lack of resources
 - Deadlines won't solve the problem!

Basics The Contract-Net Protocol

Contract-Net with Confirmation Protocol

A possible solution to the eager bidder problem:

Summary

- Different kinds of interaction and communication
- Focus on agent-to-agent communication
- Speech act theory theoretical foundation for ACLs
- Agent communication languages & their semantics
- Interaction protocols
- But how about agent strategies in interaction and their global effects?
- Next time: Distributed Rational Decision-Making