Knowledge Engineering
Semester 2, 2004-05

Michael Rovatsos
mrovatso@inf.ed.ac.uk

Lecture 1 – Introduction
11th January 2005
General information

- Lecturer: Michael Rovatsos (mrovatso@inf, AT 3.12)
- Lecture times: Tue/Fri 3-3:50 p.m. AT Lecture Theatre 3
- Assessment:
 - Two assessed practicals counting 15% each
 - Final exam paper counting 70%
- Module Web page:
 - www.inf.ed.ac.uk/teaching/courses/ke
- Check Web page for announcements and materials
“Health warning”

- This course will cover formal material
- The slides are not a summary of the lecture (notion of “lecture” misleading)
- Making a KE DVD is much cheaper than this
 ➔ make use of opportunity for interaction!
- Idea: You do the work anyway, why not do as much as possible of it in class?
- If you want to come, be punctual and stay throughout
What is knowledge?

- **Knowledge** is a condensed presentation of information, which in turn is structured, contextualised raw data.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td></td>
</tr>
<tr>
<td>uninterpreted raw signal</td>
<td>... – – – – ...</td>
</tr>
<tr>
<td>Information</td>
<td></td>
</tr>
<tr>
<td>data + context meaning</td>
<td>SOS</td>
</tr>
<tr>
<td>Knowledge</td>
<td></td>
</tr>
<tr>
<td>purpose attached</td>
<td>emergency</td>
</tr>
<tr>
<td>generative for action</td>
<td>start rescue</td>
</tr>
<tr>
<td>creates new information</td>
<td></td>
</tr>
</tbody>
</table>
Different views

- Nature and purpose of knowledge:
 - theoretical: knowledge as “justified, true belief”
 - practical: knowledge as the “intellectual machinery” to achieve a problem-solving goal

- Symbol system vs. physical grounding hypothesis
 - Is inference on symbols representing the world sufficient to solve real-world problems . . .
 - . . . or are these symbolic representations irrelevant as long as the agent is successful in the physical world?
 - “Elephants don’t play chess” (or do they?)
Classifying knowledge

- By knowledge source: **Empirical** vs. **theoretical** knowledge
- By knowledge orientation: **Object-level** vs. **meta-level**
- Other categories:
 - Global vs. local
 - Explicit vs. tacit
 - Complete vs. incomplete
 - Certain vs. uncertain
 - Accessible vs. inaccessible
 - Fixed vs. volatile
 - Declarative vs. procedural
Exercise

Consider the following statements. What kinds of knowledge do they describe?

- John is a great pool player. He always wins against his mates.
- Mary is great at physics. Her understanding of quantum theory baffles her teachers.
- Man has proven capable of travelling to unexplored planets.
- Reuters news reports are always up to date with what is happening in the world.
Knowledge-based systems

- Knowledge-based systems (KBS) are intelligent problem solvers that represent and reason about domain knowledge.

- **Intelligent problem solving** maps domain space onto solution space using knowledge and problem data.

- Core of a KBS:
 - Data: specific, volatile & short-term information
 - Knowledge: general, stable & long-term information

- Symbolic AI view: knowledge is represented using symbols that can be manipulated by a computer program.
Knowledge in KBS

- **Domain knowledge**: knowledge about the domain of discourse
 - objects and relationships between them, domain facts, domain rules, domain types
- **Inference knowledge**: knowledge about reasoning operations on domain knowledge
- **Task knowledge**: goals of the KBS, their decomposition, control issues
- **Example**: Medical domain
 - **Domain**: e.g. symptoms and diseases
 - **Inference**: e.g. procedures “hypothesise” and “verify”
 - **Task**: e.g. diagnosis, clinical test
Knowledge Engineering

- **Knowledge Engineering (KE)** concerns the basic issues involved in building and using KBS, i.e.
 - acquisition
 - representation
 - explanation
 - validation

of knowledge in a KBS
Knowledge Engineering Process

- Data/Information
- Learner
- Knowledge
- User
- Provider/Validator
- Modeller
- KBS
- Developer
- Formal Representation

Informatics UoE
Knowledge Engineering
Central KE tasks

- **Learning**: Acquire knowledge from experts/examples (combined with prior knowledge?) with or without supervision.
- **Modelling**: Represent knowledge in computer-readable format for which appropriate *inference* methods exist.
- **Development**: Design/Implement a KBS that solves the problem at hand.
- **Validation**: Test the performance of the system according to some performance measure.
KE: The Human Interface

- Interaction btw. human and KE important in two stages: knowledge acquisition and explanation

- Knowledge acquisition:
 - IDENTIFY
 - EVALUATE
 - CONCEPTUALISE
 - FORMALISE
 - IMPLEMENT

- Requirements, concepts, representations

- Explanation
 - Convince end user that reasoning is correct
 - Convince engineer that the system is working

- Two approaches: trace-based vs. logic-based (trade-off btw. control and clarity)
Exercise

What are the pros and cons of the KE endeavour?

+ Make use of knowledge in an organisation regardless of (fluctuating) individual human experts
+ Support discovery of new knowledge through automation
+ Create systems that are more comprehensible/natural for humans
+ Unbiased, rational “thinking” of KBS
 – Great cost, esp. knowledge acquisition (bottleneck)
 – No replacement of human intelligence (e.g. creativity)
 – Dependence on technology
Course outline

1. Knowledge Acquisition
 ▶ Inductive learning of symbolic knowledge

2. Knowledge Representation & Reasoning
 ▶ Different AI-based methods for representing and reasoning about knowledge (logic, ontologies, uncertainty etc.)

3. Knowledge Synthesis
 ▶ Closed systems view: knowledge-based software synthesis
 ▶ Open systems view: Semantic Web, software agents & multiagent systems

4. Knowledge Evolution
 ▶ Combining existing knowledge with new information
 ▶ Knowledge engineering methodologies
Summary

▶ What is knowledge?
▶ What are knowledge-based systems?
▶ What is knowledge engineering?
▶ What are its most important aspects?
▶ Which of them will be dealt with in this course?