
MSc Knowledge Engineering
Second Assessed Practical

Consensus Learning Among Autonomous Agents

February 25, 2005

In this practical, you will implement a multiagent system in which agents exchange hypothe-
ses about a learning problem to reach agreement about the best hypothesis. Use the submit
procedure to submit your solution by executing the command

submit msc ke 2 <your-filename>

on any DICE machine. The deadline for submission is Friday 18th March at 4pm.
Your solution should consist of a gzipped tarball1 that contains a set of Java source code

files and a text document that contains a discussion of your results and, if necessary, additional
documentation for the code you submit.

1 Introduction

One of the key advantages of multiagent systems is the fact that they enable spatial distribution
of knowledge and local evaluation of results. Unless the communication and coordination over-
head induced by this decentralisation becomes too costly, it may aid to substantially reduce the
complexity of the original task.

In this assignment, we are going to consider a set of agents each of which locally maintains a
set of learning examples and a local learning hypothesis that is used to classify these examples.
Using a blackboard system for communication, each agent may suggest to the community of
agents to adopt her own hypothesis, wherupon other agents will compare this hypothesis to
their own previous hypotheses, and will either accept others’ proposals or reject them and make
a new proposal. Thus, agents will (hopefully) cooperatively form improved hypotheses and the
system will terminate after some agreement criterion has been met (e.g. if the majority of the
agents has accepted the hypothesis).

2 The System

On the module Web site (http://www.inf.ed.ac.uk/teaching/courses/ke) you will
find a tarball ke.tgz containing Java source files for the following classes:

• Start – A class to run agent simulations, contains the main function

• SystemManager – The system manager component that initialises the agents and spawns
threads for them; it also maintains the blackboard onto which messages are posted by
agents and decides when to terminate the simulation.

• Agent – The main agent class; each agent runs in its own thread of control and has a built-
in reasoning loop in which it decides whether to generate a new message or not. It also
maintains a set of learning samples for evaluation and a local current learning hypothesis.

1See http://www.inf.ed.ac.uk/systems/support/FAQ/#D5 for instructions on how to use tarballs.

1

KE/Practical 2, Michael Rovatsos, 25th Feb 2005 2

• Hypothesis – Class used to represent learning hypotheses, to generalise from two hy-
potheses and to evaluate a hypothesis on a given learning sample.

• Message – A class for representing messages posted onto the blackboard; each message
contains the sender’s name, a performative, and some content (usually a hypothesis)

These classes provide the core structure of the system and its basic run-time functionality. More
particularly:

• The code contains control loops for the system manager and a fixed set of agents (embed-
ded in implementations of the run() method of the Runnable interface). In other words,
the system will start concurrent threads for the manager and all agents upon start up au-
tomatically. The run() methods in the Agent and SystemManager classes are not to be
modified!

• The basic reasoning cycle of each agent is embedded in the Agent.reason()method that
is called by each agent in every reasoning cycle. Currently, all this method does is to gen-
erate a message, but obviously this should be the part of the code in which the agent’s
reasoning is performed. Note that unless null is returned, the message will be automati-
cally dispatched for publication on the system manager’s blackboard.

• Agent and system manager threads (and with them the whole system) are terminated when
a user-defined termination criterion is met, which is checked for in the main processing loop
of the SystemManager class. This should be used to implement a method of checking
whether agents have reached an agreement. Thus, each simulation run can be viewed as
a conversation between the agents which terminates with an agreement (if it terminates at
all).

In the following, you will be asked to use the existing code and extend it to implement a multia-
gent consensus learning system.

Q1: Compiling and running the system, inspecting the code (0%)
As a preliminary exercise, compile the classes using the javac command and run a simulation
using the command

java ke.Start

The system will start one hundred agents which send some messages to the blackboard and then
terminate after a short while.

Familiarise yourself with the source code of the classes provided to gain an understanding of
the basic control flow and the distributed nature of the application.

3 Distributed consensus learning

The basic learning problem the agent society is confronted with is specified as follows:

Each agent is presented with a set of instances (learning samples) with boolean at-
tributes. The hypothesis space contains all conjunctions of lists of (potentially negated)
attributes. The task of the society is to determine a hypothesis that will maximise the
number of correctly classified samples (in the sample sets held by the participating
agents).

To perform this task, interaction among the agents unfolds in the following way:
Agents propose, reject, accept or withdraw hypotheses, depending on the current best

hypothesis they can determine. Let us call all hypotheses that are currently visible on the black-
board “open” hypotheses, and the ones that have either been withdrawn by their proposer or
removed by the system manager because they were rejected by too many agents “closed”. We re-
fer to a hypothesis that is accepted by enough agents for the system to terminate as a “solution”.
Then, more specifically, an agent

KE/Practical 2, Michael Rovatsos, 25th Feb 2005 3

• can use her current own hypothesis and other open hypotheses from the blackboard to de-
termine a new hypothesis in each reasoning cycle (either by (i) keeping her old hypothesis,
(ii) replacing it by another open hypothesis or (iii) creating a completely new hypothesis by
generalising over her current hypothesis and some open hypothesis)

• proposes a hypothesis if she has discovered a hypothesis that performs better on her exam-
ples than those currently open

• withdraws an open hypothesis proposed earlier by herself if she has discovered a better
one

• accepts a hypothesis if it appears better than any of the hypotheses she can think of

• rejects any open hypotheses that perform worse on her examples than some other open or
self-constructed hypothesis.

In that, agents are not allowed to store previous hypotheses, they can only use the ones that are
currently visible on the blackboard and their current own best hypothesis.

It is the system manager’s task to maintain the set of open hypotheses on the blackboard and
to determine when an agreement has been reached. For this purpose, the system manager has to:

• Keep track of the percentage of agents that have accepted/rejected an open hypothesis. In
general, the termination criterion that will be used is

Agreement on hypothesis h has been reached if at least p percent of the agent
population have accepted it.

Once any open hypothesis has been agreed upon in this sense, the system terminates and
outputs this hypothesis as a solution.

• Remove hypotheses (and statements in favour of/against them) that have been withdrawn
by the agent who created them.

• Remove hypotheses for which there has been sufficient rejection so that the necessary per-
centage of approval cannot be reached anymore.

• Remove proposals by different agents concerning the same hypothesis (more precisely,
replace any redundant propose messages by respective accept messages on the black-
board).

4 Application: Learning diagnostic rules for a new disease

The application scenario for the implementation of the consensus learning approach is reaching
agreement over pre-diagnostic rules for an unknown disease. We assume that each of the agents
represents a medical centre that has patient data regarding symptoms and test results for a new
virus. Each learning sample is given as a list of symptom values (true/false) for the following ten
symptoms

CongestedNose, Cough, Headache, Fever, Indigestion, Insomnia, Itch, Rash, StiffNeck, Toothache

and a boolean classification for whether the patient tested positively for the new virus. For ex-
ample, if Cough = true for a patient and Test = true then the patient had a cough and was found
to be infected with the virus.

Now let us assume the virus test itself is extremely expensive, so doctors would like to have a
good diagnostic rule for when to conduct these tests, and that they want to reach agreement over
which combination of symptoms seems to predict a positive test result for the virus using their
(disjoint) sets of patient data.

KE/Practical 2, Michael Rovatsos, 25th Feb 2005 4

In other words, they want to agree on a common hypothesis by evaluating each other’s hy-
pothesis and modifying their current hypothesis with those of others.

For the purposes of this assignment, you are provided with data files for five agents (agent0.data
to agent4.data) each of which contains ten patient data records (rows) with eleven columns
that correspond to the ten symptom categories listed above (in the alphabetical order used above)
and (in the rightmost column) the virus test result for the respective patient, i.e. his/her classifi-
cation (“1” denotes “true” and “0” denotes “false” in all columns).

For example, the column “1 1 1 1 0 1 0 0 0 0 1” denotes that the patient had a congested nose,
a cough, a headache, fever and insomnia but neither of the indigestion, itch, rash, stiff neck or
toothache symptoms, and that this patient was tested positively for the virus.2

The hypothesis space agents may use is defined as the set of all possible conjunctive state-
ments about (possibly negated) symptom values that would yield a positive classification. Ex-
ample for such hypotheses are:

Cough ∧¬Fever ∧ ¬Insomnia∧ Rash ∧ StiffNeck
Headache∧ ¬Itch∧ Toothache

...

An easy way to represent such hypotheses (as suggested in the source code) is to use fixed-
length integer lists for the symptoms while maintaining the above ordering and to encode “true”
with a “1” value, “false” with “-1”, and “missing”/”not checked” with “0”, such that the above
hypotheses would be encoded as

[0, 1, 0,-1, 0,-1, 0, 1, 1, 0]
[0, 0, 1, 0, 0, 0,-1, 0, 0, 1]

Q2: Input/output functionality (15%)
Implement a method in the Agent class to read the data files and convert them into inter-
nal samples encoded as integer arrays. Consult the Java API documentation3 to determine
appropriate auxiliary classes for this purpose (such as FileInputStream, StringBuffer,
StringTokenizer and others in the java.io package). Also, you will need methods to con-
vert hypotheses to and from text in order to generate and decode messages sent to/read from the
blackboard.

Extend the Start.mainmethod to enable generating a number of agents by passing a (variable-
length) list of data file names (one for each agent) as arguments from the command line and the
agreement percentage p (a real number between 0 and 1) to the system. Your code should allow
for the following command line syntax:

java ke.Start <p> <file1> <fileN>

where <p> is the agreement percentage, and <file1> to <fileN> are n data files that will result
in a system with n agents (note that although you are provided with five data files, the code you
submit will be tested on agent populations of different sizes).

Implement a basic output behaviour for the system manager. It should at least provide the
following facilities:

• Displaying (in the current text terminal) messages as they are posted to the blackboard

• Displaying open hypotheses and their status in terms of acceptance/rejection by others
(note that you might encounter problems of size in the set of messages contained in the
blackboard, try to summarise the information if necessary)

2Note that each of the five agents has a biased set of examples: For the first agent, it would seem that positive samples
have symptoms that resemble a cold, the second might think that the patients suffer from some kind of allergy, the
third might diagnose symptoms of stress. For the fourth agent, the virus produces symptoms similar to those of a food
poisoning, and the last agent might infer that the virus resembles a dental problem or injury. Thus each of them has a
totally different view of the new disease.

3Available online from http://java.sun.com/j2se/1.5.0/docs/api/index.htmlor on the DICE file system
from /usr/share/doc/java-1.5.0-sun-manual-1.5.0/api/index.html

KE/Practical 2, Michael Rovatsos, 25th Feb 2005 5

• Reporting termination of the system and the final result, together with a justification for
choice of the solution (something along the lines of “hypothesis . . . was agreed upon by
agents 1, 2 and 3, i.e. 60% of the population”)

Q3: Implementing the agents (35%)
The agent functionality is the core element of the consensus learning system. The task of design-
ing and coding the agents can be broken down into a number of subtasks:

1. Basic communication behaviour: The basic flow of interaction between the agent and the
blackboard needs to be specified and designed with great care. You have to think about

(a) when and in which way to check for new proposals on the blackboard

(b) how to monitor whether previously supported hypotheses have been withdrawn and
a new hypothesis to support has to be sought for

(c) when to propose, accept, reject hypotheses (this involves issues such as avoiding du-
plicate proposals, responding to open proposals in a timely fashion, etc.)

(d) practical housekeeping issues (what is the model of the blackboard the agent has, does
it keep local copies of portions of it, how are these updated, etc.)

2. Dealing with hypotheses: Using the procedures defined in Q1, you will first enable agents
to load samples from a file. Then, you should provide methods to

(a) Construct an initial hypothesis

(b) Generalise over two hypotheses

(c) Evaluate a hypothesis on locally stored samples

(d) Pick the best known hypothesis in any situation

This is the “local learning” part of the system and is essential for its overall performance.
The idea is that the agent will pick a (potentially bounded) number of open hypotheses
from the blackboard and combine them one by one with her current best hypothesis. Then,
an evaluation of the “classification score” of each of these candidates will allow the agent
to pick the current best hypothesis (and this may involve breaking ties between hypotheses
that perform equally well.

Note that none of these methods needs to be highly sophisticated or complex. Rather, your
method and implementation of it should be tractable, easy to understand and intuitively
reasonable.

Implement this functionality by extending the Agent and Hypothesis classes, and, if necessary,
by creating additional ones.

Q4: Implementing the system manager (25%)
As described above, the system manager maintains the blackboard and tests for satisfaction of
the termination criterion.

Modify the SystemManager class so that it realises the following functionality:

1. Constant monitoring of blackboard consistency and blackboard modification where neces-
sary

(a) deletion of duplicate proposals

(b) deletion of withdrawn proposals and of accept/reject messages relating to a with-
drawn proposal

(c) deletion of messages with incorrect content (i.e. content that cannot be interpreted as
a hypothesis)

KE/Practical 2, Michael Rovatsos, 25th Feb 2005 6

2. Keeping a record a acceptance/rejection votes for each open hypothesis and updating this
as new messages and testing frequently for satisfaction of the termination criterion.

3. Shutting down the system when a solution has been found (or determining that no solution
can be found in certain situations, if you think this is possible (?)).

As with agents, carefully designing the control flow of the system manager is a key issue, as you
typically want to avoid, for example, redundant processing cycles that check for consensus while
no new messages are posted.

Q5: Evaluating the system (25%)
For this question, you will have to write an evaluation report (about 2 pages) that contains sec-
tions on the following topics:

1. Design & implementation of your system (summarises the work done for Q2-Q4)
Describe key design issues, problems encountered, and how these were (not) solved, trade-
offs made. Justify your decisions.

2. Performance of the system
Conduct several simulations with your system and report on

(a) the quality of the solutions obtained (by evaluating them on the union of all sample
sets),

(b) runtime behaviour of the system (how long simulations took, whether runtime prob-
lems occurred, etc.)

(c) an evaluation of the advantages and disadvantages of a multiagent approach in this
case (for example, you can test your hypothesis construction and generalisation meth-
ods on the union of all sample sets and compare their performance to the multiagent
case).

3. “Playground” section (optional)
Report on any other ideas you have had to improve your system, and which of these
worked. Also, you might draw more general conclusions regarding the consensus learning
approach and suggest potential improvements.

5 General implementation guidelines

Please follow the following guidelines for this programming assignment:

• Comment your code: be verbose about what the sources do, explain methods, variables
and the control flow between individual components. It doesn’t have to be javadoc, but
at least comments inside the source files. No credit will be given for undocumented code.

• Do not access components internal to other agents or the system manager by writing your
own methods for doing so. All agents and the system manager are allowed to “see” are
the contents of the blackboard. Use of the “public” keyword in the SystemManager and
Agent class source code indicates which methods other objects are supposed to use.

• Integrate your code into the ke package, so that it is easy to compile and run, and provide
additional information for its use where necessary. It should always be possible to run the
code using the command line format suggested above in the current working directory,
i.e. without peculiar classpath settings etc.

As a final remark, this assignment allows many degrees of freedom and does not make prescrip-
tive statements regarding all details of the implementation. Try to produce a coherently designed,
functional, and reasonably elaborate piece of software, neither a masterpiece nor a almost-trivial
implementation.

