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Chapter 1

Introduction

1.1 Overview

This module introduces a variety of methodologies important to the development of knowledge-based
systems (KBSs) and their applications. The module covers topics regarding different processes within
a KBS lifecycle, ranging from knowledge capture and analysis, systems design and implementation,
to knowledge maintenance and system evaluation.

In particular, within this module, students will learn about:

� The life cycle of a KBS.

� Basic methods by which knowledge appropriate to the construction of a KBS can be gathered
and organised systematically.

� Techniques by which a KBS suitable for a given domain may be automatically synthesised.

� Ontologies that provide a common vocabulary of a domain, and define the meaning of the terms
and relations between them.

� Ideas of reasoning maintenance that a KBS can use to make hypotheses and explore their con-
sequences.

� Example approaches for building practical problem solvers that (re-)use knowledge.

� Maintenance, evaluation and cooperation of KBSs.

1.2 Data, Knowledge and Knowledge Engineering

The main aim of the development of an intelligent system is to represent and to reason about, as
adequately as possible, the existing domain knowledge, in order to perform a certain problem-solving
task. In the most general sense, problem-solving can be thought of as a process of mapping the domain
space onto the solution space of the given problem. This mapping is enabled by the use of knowledge,
which reflects domain theory and heuristic rules, and/or analysis of the problem data available.

Here, data is the raw material that information comes from; they could be numbers or nominal val-
ues. Information is generally regarded to be any structured data which has contextual meaning. What
is knowledge then? Knowledge is a concise presentation of information, which condenses structured
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Figure 1.1: Major processes for knowledge engineering

data and abstracts previous experience at a high level. Knowledge reflects general, stable and long-
term information of the domain, whilst data conveys specific, volatile and short-term information.
Of course, most broadly speaking, information includes both data and knowledge, and together they
make the core of an intelligent system. Thus, data and knowledge must coherently fit each other.

Knowledge engineering concerns the basic issues involved in building intelligent problem-solvers.
It includes (though not exclusively) the learning, representation, interaction, explanation, validation
and adaptation of knowledge and data [Kasabov, 1996]. The central tasks of knowledge engineering
cover:

� Learning acquires knowledge, typically through generalising examples, with or without super-
vision, or via experiments.

� Modelling transforms existing domain knowledge to a particular computer format, often by
expressing the knowledge in a formal language that supports inference (which performs a chain
of matchings between current facts and the knowledge, thereby deducing new facts).

� Development designs and implements the system, which reasons with the formally represented
knowledge, to solve the problem at hand.

� Validation tests the performance of the resulting system, usually in terms of given quality factors
in comparison with alternative systems.

These are summarised in figure 1.1. Note that the knowledge (and other forms of information and
data) may well be provided by the same person as the system validator, usually a specialist in the
problem domain. In addition, this person may happen to be the end user of the resultant system.

To support performing the above central tasks, the following additional processes are also very
important for knowledge engineering:
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� Interaction allows communications between the system and the environment/user, where the
user may be another computer system.

� Explanation traces the process of inferring solutions in a contextually comprehensible way.

� Adaptation modifies the system during its service to cope with a dynamically changing envi-
ronment.

Note that in the literature, the term knowledge engineering is sometimes restricted to the process
of building a knowledge base within an intelligent system [Russell and Norvig, 1995], where only the
determination of what concepts are important in a particular domain, and the creation of a formal
representation of the objects and their relations in that domain are considered. However, it is the
more general interpretation of the term as outlined above that is adopted herein, although not all the
issues are addressed in equal detail (many of which are covered elsewhere, e.g. in the KR and LfD1/2
modules).

1.3 Knowledge Classification

No matter what issue of knowledge engineering is considered, it is important to know what sort of
knowledge is being addressed. In general, knowledge used to build an intelligent system can be
characterised at least along the following two distinct dimensions:

� knowledge source that shows where the knowledge comes from

� knowledge orientation that determines what subject the knowledge addresses

Different combinations of these two dimensions indicate different characteristics of the given knowl-
edge. Typical classes of knowledge that can be identified along these dimensions are given below.

There are two major sources from which knowledge can be obtained, which are commonly re-
ferred to as empirical and theoretical:

� Empirical knowledge relates to that gathered directly from first-hand experience. It captures
what has been induced from direct observation of the problem domain or system. Empirical
knowledge is, therefore, highly effective when applicable, although limited in its generality. It
is this kind of knowledge that has been mostly utilised within a vast majority of developed rule-
or case-based systems.

� Theoretical knowledge is, on the other hand, the knowledge of scientific laws and principles. It
is very general and transferable from one application to another. The use of such knowledge
helps remove much of the difficulty encountered in the knowledge acquisition phase associated
with empirical knowledge. However, this very generality may mean that it can be much less
efficient and even less effective. This limitation is a major reason that its use in intelligent
systems has, until fairly recently (with the development of model-based systems – see later),
been almost exclusively restricted to numerical descriptions for uncertainty-handling only.

Clearly, these two sources of knowledge are complementary; a combined application of empirical and
theoretical knowledge may well offer the best trade-off between generality and efficiency.

Against the knowledge orientation dimension there also exist two commonly referenced classes
of knowledge:
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� Object-level knowledge, which describes the properties or behaviours of the domain concepts
themselves.

� Meta-level knowledge, which usually reflects reasoning knowledge about the knowledge at the
object level.

For example, in developing a medical diagnostic system, the medical rules associating symptoms to
possible diseases encode the object-level knowledge, whilst the mechanisms used to focus the rule-
firing are normally based on the use of meta-level knowledge. Another example to compare object-
and meta-level knowledge is to look at the differences between an ordinary fuzzy logic controller
and a self-organising fuzzy logic controller [Lee, 1990]. The former applies object-level knowledge
(or modelling knowledge as termed in Control Engineering) that directly relates state variables to
control variables via a collection of if-then rules. The latter works by following a two-step process:
i) measuring the performance of an ordinary fuzzy logic controller on-line, and ii) using the resultant
performance measurements to modify the if-then rules employed by the object-level controller. Such
modifications are guided by the meta-level knowledge that reflects knowledge about the knowledge
used to control, rather than the control knowledge itself.

At a more detailed level, knowledge can be further classified into many more categories. For ex-
ample, these may include those determined by the following modelling dimensions [Kasabov, 1996]:

� Global vs. local knowledge. The former is applicable to the problem as a whole and the latter
is for particular aspects only.

� Explicit vs. tacit knowledge. Explicit knowledge shows the structure in which it is itself de-
clared, whilst tacit knowledge is usually hidden in a knowledge source.

� Complete vs. incomplete knowledge. A piece of knowledge is complete if it allows a solution
to the problem (or part of the problem) in all situations, or incomplete if it only applies to some
cases.

� Certain vs. uncertain knowledge. The former ensures an exact solution is produced if an exact
problem description is given, and the latter allows for an approximate solution given an inexact
problem description.

Understanding these knowledge category dimensions helps to identify and establish useful method-
ological links between the required knowledge engineering tasks and the available knowledge, in
dealing with knowledge-based problem-solving.



Chapter 2

Knowledge Systems and Human
Interface

2.1 Knowledge Acquisition

In constructing a Knowledge Based System (KBS), there are two interfaces that have to be taken into
account. We will first consider knowledge acquisition: how can we go from a body of expertise into
the KB of a KBS? We will then consider the need for an explanation facility.

An initial problem in constructing a KBS is the source of the knowledge that is to be encoded.
In early systems, the builders of the systems were themselves often domain experts, but this is not
usually so. Getting hold of knowledge is in fact a major bottleneck in producing applicable expert
systems.

In building a Knowledge System, usually the system builders are experts as far as the programming
knowledge is concerned, but where knowledge of an application domain is concerned, the knowledge
has to be elicited from domain experts (e.g. the Amphion KB on astronomical observation).

Stages of knowledge acquisition

We can represent stages of knowledge acquisition as follows (see Figure 1). Note how this resembles
the software engineering process – in particular this typically involves iteration through the loops
shown until a satisfactory system is achieved. However, the conceptualisation stage is easier or absent
in a standard SE model.

The following stages are involved.

1. Identification
What problems will the system be expected to solve? (eg what data are available, what counts
as a solution?). Also the resources available (people, time, computing power) determine how
the problem may be tackled.

2. Conceptualisation
This is perhaps the hardest stage. The expert’s knowledge is usually unstructured, and it is
important to work out what the key concepts are, and how they are related, so that the KB will
eventually be easy to construct and comprehensible.

6
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3. Formalisation
At this stage, an appropriate formalism has to be chosen (eg production rules, logic, etc.). This
depends on the nature of the search that will be required, and factors such as

� Is the information complete?
� Is the information certain?
� Is there time dependency?

4. Implementation
Now the knowledge should be put into the selected formalism, using appropriate data structures,
and an appropriate control regime chosen.

5. Testing
The final stage is to test the program on sample data. This may reveal missing or incomplete
rules. It also often throws up combinations of circumstances that had not been considered. To
do this systematically, it is best to start from a well-defined class of problems.

Machine Learning

Since the knowledge acquisition process is time consuming, various methods to provide some au-
tomated support for it have been proposed. One is the use of techniques from machine learning.
The idea is that the rules used in the system should be inferred automatically from some number of
examples, rather than entered explicitly. There are several possible approaches.

1. An interactive program could learn by “conversing” with the expert.

2. A program could scan textbooks and written sources to convert this into knowledge.

3. A program could learn the central concepts and rules from the study of a series of examples.

All of these have been attempted, but only the last seems to work. For one thing, the first two require
a natural language interface to the program, and it is hard to make this sufficiently robust.

Machine learning works as follows.
Given a number of examples which are either positive (fit the concept) or negative (don’t fit the

concept), and a language for describing examples, find a description in the language that best describes
the examples.

This helps the knowledge acquisition process, since often the expert uses rules she is not aware
of, whereas it is easy to decide on individual cases. Thus, for example, given a large number of
judgements of whether a loan should be given to an applicant, and the evidence used to come to the
decision, a machine learning program can determine a set of rules that would give the same results,
and that can be applied to future examples.

2.2 Explanation

We want our KBS to explain its reasoning, for two reasons.
� We want to convince the end user that the reasoning is substantially correct.

� We want to convince the knowledge engineer that the system is working properly.

Note that these ask for different sorts of explanation. The second calls for something like a trace
mechanism. The first calls for the implementation details to be hidden.
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Examples

In a rule-based expert system, we can easily generate an augmented trace of the rules that fire during
inference, and similarly retrieve parameter values. This yields a verbose explanation – for larger
systems, this sort of explanation will be opaque, as the quantity of detail obscures the important steps.

One solution is to have levels of trace, to pick out the features of interest. For example, the user
is usually not interested in knowing about rules that were tried and failed (though the knowledge
engineer may be).

We can also have an explanation of control – why was one inference preferred above another. This
is important in systems that support SE design.

Sometimes the user is queried interactively for information, rather than entering all information
into the KB – when a goal cannot be solved from the given KB, the user is queried to see if relevant
information is known to the user, but not in the KB.

Then we can generate explanations based on the dialogue, for example:

To show Fred should take exam_51
I used rule

<person> should take <exam>
IF <person> studies <subject>
AND <exam> examines <subject>
AND NOT <person> exempted <exam>

You said Fred studies CS2.
I know exam_51 examines CS2.
I can show not Fred exempted exam_51.

Logic-Based Explanation

In the logic-based approach, we can use the derivation as the source of an explanation. This simply
records which inference rules were used, and which conclusion were drawn. This is like looking at
the successful part of the trace of the derivation search. This however says nothing about control (why
this derivation is found rather than another).

However, a good explanation should pick out the key steps of a derivation – we do not know how
to do this.

Logic can be used as

� Specification language for expert systems;

� representation language for domain knowledge;

� meta-language for controlling and justifying inference.

For explanation, we want aspects of each of these. For good explanations, we’d need an explicit
formulation of structural knowledge (ie how the KB fits together, or the conceptualisation); and also
some model of the user’s knowledge and skill, so that the explanation is in terms that make sense to
the user.

For the second, this suggests incorporating some ideas from tutoring systems.



Chapter 3

Knowledge Acquisition

3.1 Introduction

Before you can build an intelligent reasoning system you have to investigate the problem domain
thoroughly, discover the basic concepts, terminology, inference strategies and so on. The process is
known as knowledge acquisition. This process is very difficult for any but simple systems; if it were
easy there might not be a need for an intelligent system in the first place. It is also an art rather than
a science, although there are now some techniques which can ease the burden a bit. This chapter
introduces several basic approaches to coping with knowledge acquisition.

3.2 Knowledge Elicitation

A related term to knowledge acquisition is knowledge elicitation, which is regarded by some people
as synonymous and by others as referring to the more specific part of the process in which you and a
domain expert are actually communicating. This is discussed below.

3.2.1 Some issues

Suppose you are asked to create an intelligent system to advise customers in a large DIY store about
choosing a glue. Most of its users will not know the jargon associated with glue technology. You
have to go to an expert (or several experts, as long as they are reasonably agreed about the domain) to
acquire initial knowledge that you need to build the system. Do not say “tell me all you know about
glues”; if s/he does you’re probably in trouble, more probably s/he won’t know where to start and will
classify you as unprofessional. You have a serious problem to solve at this point. If you start with
high-level generalities you may lose the expert’s interest and enthusiasm; if you start with interesting
specific cases you may find it very hard to draw out the kind of generalities that make the resulting
system much more than a humble database.

For example, if you are discussing the so-called ‘super-glues’ the expert might point out that some
of them are useless if the joint will later be subjected to unusual humidity or significant moisture. At
this point you may ask yourself: what is ‘significant’, what is ‘unusual’, is this issue about suscepti-
bility to water a common feature applying to many glues which ought to be a factor in any dialogue,
or is it some subsidiary factor to be raised after tentatively deciding that the ‘super-glue’ might be the
one for the job? All of these questions, and many more, have to be resolved at some stage – but when,
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and what should you do right now? Keeping track of all such threads over several interviews is very
demanding and calls for good personal organisation and forethought.

In the domain of recommending a glue you can at least start by observing that there are just a
finite number of ultimate recommendations – the available glues, plus the recommendation that some
other form of joining such as welding or riveting or bolting may be better, and perhaps others such
as to seek professional advice. Thus you can ask for categorisations of the available glues – in what
circumstances would each be recommended, what are the limitations of each, and so on. However,
you should not just trust that the expert will do a thorough job of answering such pedantic questions.
Remember that the expert gets to answer a lot of rather boring but specific requests, and probably
enjoys trying to answer the relatively few more exotic requests such as how to glue ostrich feathers
onto a giant inflatable nylon model of an ostrich, or stick down empty barnacle shells to real rocks
in a salt-water tank in a large public aquarium. So, you should get down to such cases as part of the
‘knowledge mining’ process. You have to invent them or get the expert to resurrect them from past
experience, or both. The feedback you get may help to check that you are getting a good coverage of
the knowledge, or that you are missing some issues, attributes, processes or decisions.

An early step is perhaps to list the types of glue and the possible properties of an unspecified glue,
such as price, strength, ease of use, drying time, what it is suitable for, what it is not suitable for,
conditions of use, shelf life, precautions when applying it, available sizes. Each property has a set of
possible values, although some are rather fuzzy – strength, for example, could depend on what is being
joined and the subsequent environmental conditions. Some properties such as shelf-life may
only need a single value such as weeks, months or years; others such as available-sizes
will have a set of values; others may require a numeric range or set of ranges. You may also find that
all this information can be more conveniently organised by constructing a categorisation of glues into
cyanoacrilates, synthetic-latex glues, rubber-latex glues, resin-based glues and so on, although it is
not so easy to decide on a taxonomy – a complete categorisation without overlap.

It is a lot harder to list the types of application about which a user might enquire, and the possible
salient properties of such applications. There are also intermediate levels of the whole process to
worry about; it is unlikely that the user’s information will immediately determine the answer. Instead,
the process is rather like diagnosis. For instance, if the user starts by saying that s/he wants to join
two metal parts, this may suggest possible answers of a resin-based glue, a cyanoacrilate, soldering,
welding, or mechanical fastening and the task becomes one of asking enough to decide between
the possibilities. You may decide, therefore, to build a system which will interact with the user so
that they can converge on an answer – the user’s information suggests initial recommendations, the
system provides feedback about the options which trigger the user to provide more detail about the
application, and so on.

The task of sorting out attributes, values and so on for all the entities within a proposed system is
usually demanding. Various techniques are commonly used, the basic ones are described below.

Obviously you must also put a lot of thought into your interview technique. Common-sense
observations include: don’t interrupt (much); try to deal in specifics rather than generalities; be well
prepared in advance; try to tape or video interviews rather than relying purely on handwritten notes;
don’t impose your own views about how to communicate the material; be thoughtful about suggesting
what kind of aids might be used (some people don’t like whiteboards, or flowcharts, or algorithms, or
rules, or numbers).
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3.2.2 Interviewing: teach-back

A straightforward but under-specified technique is to try to reformulate and summarise what the expert
has said and teach it back to him/her. The same kind of idea is sometimes used in teaching. It has
drawbacks: it is hard to do well, and the expert may of course be tempted just to approve of your
version without assessing it for more subtle qualities such as completeness and conciseness.

3.2.3 Interviewing: laddered grids

This technique explicitly views the domain as laid out, in some sense, along an axis from the general
to the highly specific. Starting with some ‘seed’ item you grow a network of how the domain items
relate to each other by asking a number of ‘directional’ questions such as:

� To move towards the specific:

“How can you tell it’s a . . . ?”
“Can you give examples of . . . ?”

� To move towards the general:

“What have . . . and . . . got in common?”
“Where do . . . and . . . arise from?”

� To move orthogonal to the axis:

“What are alternative examples to . . . ?”
“What distinguishes . . . from . . . ?”

You are liable to cover a lot of large sheets of paper. Note that there are also tools to support this
technique (e.g. PC-PACK produced by Epistemics).

3.2.4 Interviewing: card sorting

This technique is specifically for the job of discovering what attributes of domain elements serve to
distinguish them from each other. The domain elements are written on cards, one per card. You ask
the expert to sort the cards into piles somehow. Afterward, you ask what was the basis of the sorting
procedure, for example by asking what each pile represents. You may go through each pile and ask
why each member is representative of that pile, or to what extent it is representative. You can also ask
the expert if there are any cards missing from the pile. The procedure is repeated as often as you can
both stand it!

Hierarchical card sorting is an easy variant. After a sort, each pile can be treated as a domain in
itself and sorted into sub-piles.

3.2.5 Interviewing: repertory grids

This technique is based on a model of how people regard the world, called ‘personal construct theory’,
devised by psychologists. The idea is that each domain element in some set of interest is classified
according to a set of constructs that apply to all the elements of the set to some degree – a construct
is a linear scale with two extreme values, such as heavy/light, cheap/expensive, wet/dry, conscien-
tious/dilatory or whatever.
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Every construct of the set of constructs that apply to the domain set is then expressed as a numeric
scale, using the same range of numbers each time, typically 1—5 or 1—9, with the centre of the scale
representing some kind of medium value for that construct. A grid is constructed and the expert is
asked to assign a number for each construct for each domain element, showing how s/he would place
that domain element on that construct scale.

An example will help to make this clearer. Imagine that the domain elements are certain types
of crime: petty theft, burglary, drug-dealing, murder, mugging and rape. It should be obvious from
figure 3.1 that the various constructs are being ranked on a scale of 1—5 and that it is not always the
value on the left-hand side of a scale that corresponds to the value 1.
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major
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anybody

long sentence
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3
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1 1 2 3 5

5 1 1 4 5

3 1 2 5 4

2 2 5 5 5

2 2 1 5 4 5

1 3 1 5 4 5

1 1 2 5 5 5

Figure 3.1: A rep grid example

You may well disagree with the numbers in this example, but it is the expert’s view that is at issue
rather than yours. The next step of the analysis is to consider carefully whether any pair of constructs
are very similar, by comparing horizontal lines in this grid. The closest pair of constructs is probably
the personal/impersonal one and the major/petty one. Beware, when making this comparison, that
the expert may have ‘inverted’ the scale for just one of two similar constructs. For example, in the
example the major/petty construct has a value of 5 for ‘major’. If the expert had chosen 1 instead, and
5 for ‘petty’, then this construct and the personal/impersonal one would look very different.

If, after considering each construct as shown, and inverted scales, you find a pair which are similar,
you may have to consider omitting one of the pair since they might arguably represent the same
information. In this case suppose that all of them are kept, since it can be argued that there is a clear
difference in meaning and so the similarity is due to other factors.

The next stage is to draw up a table showing how similar or dissimilar each domain element
is from the others. For example, when the absolute-value metric is used, the (numeric) difference
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between petty theft and burglary is
� ���������	� �
�������	� �
�������� �
������	� ��������	� �
�������	��������������������������

Also, the minimum difference possible is 0 and the maximum is 32. A table of differences would look
as shown in figure 3.2.
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-
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Figure 3.2: Comparing domain elements

Note that any other distance metric may be utilised for this, though the introduction of a more
complex metric may increase the overheads over the calculation of the distances. Note also that it
is sometimes more convenient to standardise the numbers by expressing them as percentages of the
maximum possible difference but this can, by showing larger numbers, introduce a superficial air of
precision.

It is reasonably evident from the table that mugging, murder and rape are fairly similar to each
other; so are petty theft, burglary and drug-dealing. Rape and drug-dealing are the most dis-similar. A
more sophisticated cluster analysis can be done if there are many domain elements. The final output
is useful mainly for two purposes: to help sort out the categorisation of the domain elements, and to
find similarities and differences for further discussion.

3.2.6 The importance of jargon

You need to learn to talk the same kind of jargon as the expert, but you also need to pay careful
attention to the kind of jargon which the end-user will expect and will be comfortable with. Many
intelligent systems projects have failed on this point alone. For example, in some financial application
system that advises about the financial health of small companies one of the atomic ingredients used
in describing the domain knowledge might be a quantity called the ‘quick ratio’. The ‘quick ratio’
is defined to be current assets less inventory, divided by current liabilities; it is used as a rapid (and
crude) measure of health, because it shows how well a company could meet its liabilities without
selling anything that is vital to its business. In general, regarding this quantity, any value larger than�����

is taken to be good!
You must then ask yourself: do the end-users know what the ‘quick ratio’ is, or must it be ex-

plained? Would any users feel patronised if it were explained to them? Do they call it the ‘quick
ratio’, or do they call it the ‘QR’? Some places call it the ‘acid test ratio’ instead. If you show due
sensitivity to the local culture by paying attention to such details (perhaps even making them cus-
tomisable by some separate tool which edits the knowledge base easily) you are much more likely to
win acceptance for your system.
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Sometimes you may find that cultural dependencies must be built into the knowledge base. For
instance, a British medical diagnostic system might want to adjust the likelihood of cholera as a diag-
nosis according to whether the patient has recently returned from a tropical or semi-tropical country.
Obviously the related question would be inappropriate if this system were being run in Bangladesh,
or even in Italy. Intelligent systems need to have relevant local common knowledge wired in rather
than asking for it.

3.3 Rule Induction

In addition to using standard interview techniques, sometimes it is also possible to use machine
learning techniques in general and rule induction in particular to generate rules from data semi-
automatically. Informally, the notion of rule induction concerns the condensation of an existing set
of highly specific rules into a new and more efficient form. This often appears in the literature as
‘learning from examples’. To give you a brief account of the basic ideas of rule induction, two such
learning algorithms are introduced in this section.

3.3.1 Entropy-based approach

Consider the following scenario: you are stranded on a desert island, with only a pile of records and
a book of poetry, and so have no way to determine which of the many types of fruit available are safe
to eat. They are of various colours and sizes, some have hairy skins and others are smooth, some have
hard flesh and others are soft. After a great deal of stomach ache, you compile the table of data shown
in table 3.1. This is pretty tedious to look up each time you feel hungry; is there some kind of pattern
to it? This can be viewed as a set of examples, where each line states the values of certain variables
and a conclusion. On the other hand, it can be viewed as a set of rules: the first line is

if skin = hairy
and colour = brown
and size = large
and flesh = hard
then conclusion = safe

Such rules are not constrained to have a fixed number of preconditions, of course. Suppose that
there were a rule which had no precondition about the size of the fruit. Then it could be replaced
by two rules, one in which size = large and one in which size = small were extra pre-
conditions, or it could be replaced by a rule with the single equivalent extra precondition size =
Anything or the precondition size = large or size = small.

It is possible to devise a decision tree to replace this set of rules, automatically. The decision tree
is of the general form

if variable1 = value1 then <subtree 1>
else if variable1 = value2 then <subtree 2>
else if ...
...........
else if variable1 = valueN then <subtree N>

This corresponds directly to a set of rules, with as many rules as there are leaf nodes in the whole tree.
Each rule is a tracing out of the path from the top of the tree to a leaf node. The process is not limited
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Conclusion Skin Colour Size Flesh
safe hairy brown large hard
safe hairy green large hard
dangerous smooth red large soft
safe hairy green large soft
safe hairy red small hard
safe smooth red small hard
safe smooth brown small hard
dangerous hairy green small soft
dangerous smooth green small hard
safe hairy red large hard
safe smooth brown large soft
dangerous smooth green small soft
safe hairy red small soft
dangerous smooth red large hard
safe smooth red small hard
dangerous hairy green small hard

Table 3.1: Identifying what is safe to eat

to preconditions of the form This = That, either, although for the purpose of explaining the idea
only this kind of precondition will be considered. The key question is which of the variables (or
attributes) is the most useful determiner of the conclusion of the rules. Whichever it is, that variable
ought to be the first or topmost one in the decision tree. Information theory provides one answer,
as well as providing a meaning for the notion of ‘most useful determiner’. To formalise it, suppose
that the conclusion � can have any of the values ������������� (in the example above, 	 � �

and the
conclusions are ‘safe’ or ‘dangerous’). Suppose that a certain variable 
 can take values ������������ .
Then the expression ������������� ��� � �����
is deemed to be a measure of the ‘amount of information’ that � � has to offer about conclusion � � –
it is, in information theory terms, the bit length of the probability, and this is where the term ‘bits’ in
computer science came from. Information theory defines

entropy
��� ��

�! ��
��� ��� � ����� �����"�"��� ��� � �#�$�

to be the entropy of � � with respect to the conclusion � . Entropy is a measure of ‘degree of doubt’ –
the higher it is, the more doubt there is about the possible conclusion.

This definition of entropy is not arbitrary. Suppose there is a set of possible events, but all that
is known about them is their probabilities

� ������ �&% . Any measure of the uncertainty about which
event will occur should be some function ' �(� �*) ����� ) �&% � of the probabilities, and should satisfy the
following very reasonable conditions:

1. It should be a continuous function of each argument.

2. If the probabilities are all equal (
� �,+#-

) then entropy should increase as
-

does. With equally
likely events, when there are more events there is more uncertainty about the outcome.
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3. If the ‘choice’ between events is split into a set of successive ‘choices’ then the entropy of
the original set should be the same as the weighted sum of the entropies at each step of the
successive ‘choices’. That is, the entropy should not depend on the ‘choice’ method. For
example, this means that if the events are concerned with throwing a die, and are specifically
“three or less”, “four or five” and “six”, then this could be cast as a two step process: “is it
three or less, or higher?”, then “if higher, is it six or not?”. So, in mathematical terms, this
independence means that

' � �� )
�
� )
�
� � � ' � �� )

�
� � �

�
� ' � �� )

�
� �

It can be shown that the entropy function above is the only one which satisfies these conditions.
To return to the original problem now, the lower the entropy of � � with respect to � is, the more

information that ��� has to offer about � . Using this expression, the entropy of the variable A with
respect to C is

� ��
�  ��

��� � � �
��
�! ��

��� � � � � � � ����� � ��� � � � � � �
and the variable which has the lowest entropy is the most useful determiner.

Consider the variable Size in the above example. From the table, when frequency measures are
approximately taken to be the probabilistic measures, it follows that

����� ����� � � �	��
���� � ��+�
����� ��	�
������� � � � ����
��$� � ��+�

����� �	��
���� � ��+ � �
����� ����� � ��� � ��� � � ��+��

����� �"	�
������� � � ��� � ��� � � �"+��
������� � ��� � � ��+ � �

Thus the entropy for Size as a determiner of Conclusion is, using logarithms to base 2:

��+ � � � ��+������� � ��+� � � ��+�������� ��+� � � ����+ � � � ��+�� �!����� ��+�� � ���"+�� �!��� ���"+�� � � � � ��� � ����� � � �����

Since it is only necessary to compare entropies it makes no difference to use
� ��
! � ����� � rather than� �"
 � � ����� � . If you do all the calculations you will find that Colour has the smallest entropy. The next

step is to partition the set of examples according to the possible values for the colour, and apply the
same process to each subset. This eventually leads to the rules:

if colour = brown
then conclusion = safe

if colour = green
and size = large
then conclusion = safe

if colour = green
and size = small
then conclusion = dangerous
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if colour = red
and skin = hairy
then conclusion = safe

if colour = red
and skin = smooth
and size = large
then conclusion = dangerous

if colour = red
and skin = smooth
and size = small
then conclusion = safe

This set of six rules, each smaller than any of the originals, is an improvement on having those sixteen.
They are all smaller because, as you might have guessed, the variable Flesh is irrelevant. If you look
at the table, you will find some examples of lines in it which differ only in the value of this variable.
From such an observation you can only conclude that the variable is, under certain combinations of
the other variables, irrelevant; it should be a little surprising to you that it is always so.

The six generated rules can be even more succinctly put, however – only small green ones or large
smooth red ones are dangerous. Of course, that word ‘only’ conceals the fact that there are only two
possible conclusions. Often such a further apparent compression of the rule set will not be easy to
find, if it exists at all. One easy method is to try omitting each rule condition in turn, testing to see
whether this results in any misclassification of data.

If you consider using this algorithm then there are, as ever, points to bear in mind. First, if the
table of data about edibility had included a record of which day of the week the sample had been eaten
on, the algorithm would have blindly considered this as a factor. So, wholly spurious correlations are
possible, since the algorithm takes no account of any meaning the data it works on may have. Second,
the algorithm considers just one variable at a time. If two variables turn out to have almost identical
entropies it will still select the lower entropy, whereas it might have been better to consider them
jointly (as though they made up a single variable). Suppose that the following data is given:

Outcome X Y
yes 3 3
no 2 1

yes 4 4
no 2 4
no 1 3

yes 1 1
yes 2 2
no 2 3

The entropy-based algorithm is incapable of spotting the obvious summary, that:

if X = Y then outcome = yes else outcome = no

Third, when inducing rules from large sets of examples in which there are a large number of possible
outcomes (that is, 	 is large), then the algorithm can be very sensitive to apparently trivial changes in
the set of examples. The original algorithm, named ID3, tried to cut down on effort by inducing a set
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of rules from a small subset of data, and then testing to see if those rules explained other data. Data
not explained were then added to the chosen subset, and new rules induced. This process continued
until all the data was accounted for. The letters ID stood for ‘iterative dichotomiser’, a fancy name
for this simple algorithm. However, tests have suggested that the algorithm often does not save much
effort, you might as well just induce rules using the full set of data at the start! Fourth, the algorithm
cannot generate uncertain rules or handle uncertain data (though recent attempts have been reported
to extend the basic ideas of ID3 to cope with uncertain data via the use of fuzzy sets [Janikow, 1998]).

In practical use of this algorithm there are other issues requiring consideration. These include
the determination of an appropriate depth in growing the decision tree, the preprocessing of training
samples involving continuous attributes and/or missing values, and the use of alternative measures for
selecting attributes. Fortunately, the algorithm has been extended to address most of these issues (see
[Quinlan, 1993] for further details). A brief summary of the extensions made to cover these issues can
be found in [Mitchell, 1997].

Although ID3 and its derivatives (represented by C4.5) have been used successfully to condense
sets of examples into rules, they must be used with care. You must be sure that the variables you
choose to include in describing the examples (the Colour, Skin and so on in the example above) must
include the ‘right’ ones. If the algorithm is given a complete set of examples then it can usually do a
worthwhile job; if it is given only a subset then it is up to you to make sure that the subset is somehow
representative of the whole. If a brown-skinned dangerous fruit were to be added to the data table
above, the generated rules would change radically. For these reasons, rule induction algorithms are
usually used to suggest correlations that can be confirmed by logical analysis afterward, rather than
being trusted to get things right by themselves.

3.3.2 Version space-based approach

Many established approaches to learning from examples are data-driven, in the sense that revisions
to the current (partially) learned results are determined in response to the observed discrepancies be-
tween these results and the newly obtained examples or data. Some of these are tailored to performing
concept learning, that is, to form a general description of a class of objects from a given set of exam-
ples. The basic ingredients are:

� a formal rule (or concept) language, perhaps with some semantic information attached,

� a series of examples which are instances of the concept to be learned, and

� a series of examples which are not instances of the concept to be learned.

The learning algorithms’ job is to find a ‘good’ expression in the rule language which is true of all the
examples and false for all the non-examples.

A particular approach is based on the idea of version spaces [Mitchell, 1982], where a version
space is a set of all plausible versions of emerging rules. Considering data-driven learning as a search
problem, subject to constraints imposed by given examples, the version space algorithm can then be
thought of as a method to keep track of the search through general and specific versions of possible
solutions. Here, the solutions are emerging learned rules. Instead of guessing at the correct version of
a rule and revising the guess with the increment of examples later on, all versions that have been in
agreement with the data so far are kept. Different versions of a rule are related by hierarchies, with the
leaves indicating the most specific, the roots denoting the most general and the truth lying between.
The number of the hierarchies required is the same as that of the attributes to be considered within
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(and (love Andy Mary) (love Mary Andy))

(and (love Andy Mary) (love Mary ?))

(and (love Andy ?) (love Mary ?))

(and (love Andy ?) (love ? ?))

(and (love ? ?) (love ? ?))

Figure 3.3: General vs. specific premises

the premises of the rules to learn. Within such a hierarchy, as more examples are presented, the gap
narrows between the most general and the most specific versions, of the rule under learning, which
remain to be consistent with those examples.

Examples used can be either positive or negative. A positive example is one to which the rule
concerned is applicable and, hence, causes the more specific versions of that rule to be discarded in
favour of generalisation that covers all the positive examples already presented. On the contrary, a
negative example is one to which the rule cannot be applied and causes the more general versions to
be discarded.

To illustrate the term of the most general or specific, figure 3.3 presents five different premises for
two attributes that might lead to the same conclusion within a rule. In this figure, the generality of
these premises monotonically increases from top to bottom, with the first being the most specific and
the last being the most general.

Again, in terms of search, the goal of this algorithm is to find all the elements within a version
space which are consistent with all encountered examples. However, it is not practical, in general, to
perform an exhaustive search in order to reach this goal, as the size of a version space is usually quite
large. Fortunately, it is sufficient to keep track only of the “boundaries” within the rule hierarchies, or
of the most specific and the most general versions that have been satisfied with the examples presented
so far. In particular, as a new positive example is presented, the specific boundary is modified towards
more general; whilst as a negative example is added, the general boundary is changed towards more
specific. Given enough additional data, these two boundaries eventually converge to a set of learned
rules or even to a single general rule. (It is also possible to find an empty set of learned rules if all the
given examples are themselves contradictory, though such a situation is of little interest.)

More formally speaking, the version space based algorithm for concept learning [Mitchell, 1982]
can be stated as shown in figure 3.4, where � denotes the set of available examples, and � and �
respectively represent the set of the most specific and that of the most general versions that were
consistent with all previously presented examples.

To see how the version space algorithm can be used to perform data-driven learning, consider an
example. Suppose that the task is to learn about which of the many types of fruit are safe to eat, based
on the description of some basic characteristics of each fruit type. To start with, hierarchies of fruit
characteristics have to be provided with respect to all versions of those characteristics possibly to be
considered. For simplicity, assume that only two distinct characteristics, i.e. the � � � ��� � and

����� � , of
different types of fruit are considered and the corresponding hierarchies are shown in figure 3.5. Given
a set of examples as presented in table 3.2 the version space algorithm works as explained below.
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Initialisation: Let � and � , respectively, be the set of the most specific and that of
the most general versions that match the first, positive example. If the first example
in � is negative then re-order its elements such that the first becomes positive.

The Algorithm: For each subsequent example ��� � do
� If � is a positive example then do

– Retain in � only those versions which match �
– Generalise those versions in � which do not match � , only to the extent

necessary for them to match � while still remaining more specific than or,
at most, equal to those in �

– Remove from � those versions which are more general than any version in
�

� If � is a negative example then do
– Retain in � only those versions which do not match �
– Modify those versions in � which match � , only to the extent necessary

for them not to match � while still remaining more general than or, at least,
equal to those in �

– Remove from � those versions which are more specific than any version
in �

Figure 3.4: The version space algorithm

light

yellow gigantichugegreen orange brown purple red little bigtiny mini

dark small large

colour size

Figure 3.5: Characteristic hierarchies for colour and size

Colour Size Conclusion
green mini safe
green little safe
brown huge dangerous
orange little safe
orange huge dangerous

Table 3.2: Fruit safety vs. fruit colour and size
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light

yellow gigantichugegreen orange brown purple red little bigtiny mini

dark small large

colour size

Figure 3.6: Initial version space

light

yellow gigantichugegreen orange brown purple red little bigtiny mini

dark small large

colour size

Figure 3.7: Version space after presenting example 2

The given examples form the available data set � . Clearly, to learn which types of fruit are safe
to eat, those data associated with a conclusion of safe are treated as positive examples whilst those
concluded to be dangerous are seen as negative ones. To initialise the algorithm, the most general and
specific sets of versions are assigned to be the following:

� ����� � � � ��� ��) � � � �����
� ����� 
	����� 	 ) � � 	 � ���

Diagrammatically, the above initialisation can be shown in figure 3.6, where the markers put on the
top and bottom of some versions indicate the most general and the most specific, respectively, thereby
delimiting the (initial) entire version space concerned. It is worth mentioning that the two boundary
sets � and � reflect two extreme cases, with the former representing that every kind of fruit having a
� � � ��� � and a

� � � � is safe to eat and the latter expressing that only those types of fruit whose colour is

	����� 	 and whose size is

� � 	 � are safe.
In response to the second datum in � , which is another positive example, no change is made

to the colour hierarchy, since this hierarchy has already been made to suit this example initially.
However, the size hierarchy must be altered such that the most specific version becomes

��� � ��� . This
is required in order to generalise the revised � to be consistent with both of the first two examples,
whilst remaining more specific than those versions in � . After presenting this example, the modified
sets of the most general and specific versions are shown in figure 3.7, with � �	��� � � � �"� �$) ����� �
���
and � ����� 
	����� 	 ) � � � ��� ��� , meaning that, once again, every kind of fruit is safe and that only

��� � ���

	����� 	 fruit is safe to eat.

The third available example is negative, which states that huge brown fruit is dangerous. Following
the algorithm, the version space has to be adjusted so that the set � no longer covers this datum, while
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light

yellow gigantichugegreen orange brown purple red little bigtiny mini

dark small large

colour size

Figure 3.8: Version space after presenting example 3

light

yellow gigantichugegreen orange brown purple red little bigtiny mini

dark small large

colour size

Figure 3.9: Version space after presenting example 4

no change is required for the set � because the only element
� 
	���"��	 ) ��� � ��� � of it does not match this

example anyway. There are two ways to modify � ; one is to move down the least upper bound of
the colour hierarchy such that � ���� 	 is out of the revised colour hierarchy and the other is to lower
that of the size hierarchy such that �!�!
�� is excluded. Assume that the first choice is made, then the
least upper bound of the colour hierarchy is placed at

� � 
���� as illustrated in figure 3.8. This results in
that � � ��� � � 
�����) � ��� ����� and � � ��� 
	���"��	 ) ��� � ��� ��� . (Work out what results if the second choice is
made.)

The fourth example is positive, implying that those types of fruit which are �����"	�
�� in colour and� �
�	�
� � in size are safe to eat. This datum requires the adjustment of the greatest lower bound previously

marked at the bottom of 
	������	 in the colour hierarchy, so that the most specific version will cover
both 
	����� 	 and �"���"	�
�� . This lifts the marker up to the bottom of

� � 
���� . However, this fourth example
does not invoke any modification in the size hierarchy as the version space has already included the
case of

� �
�
�
� � fruit. After applying the algorithm to this example, the most general and specific version

sets become the following: � � ��� � � 
�����) ����� ����� and � � ��� � � 
�����) � � � ��� ��� . These two sets indicate
that every kind of fruit is safe to eat if it is

� � 
���� in colour and that only fruit of a
��� � ��� size and of a� � 
���� colour is safe. The resultant modified version space is shown in figure 3.9. Note that, within the

colour hierarchy, both the greatest lower bound and the least upper bound are placed on the
� � 
���� as a

result of this modification step, thereby leaving no room for further manipulation in this hierarchy.
Presented with the final example, which is negative and shows that huge orange fruit is dangerous

to eat. Knowing that no more revision can be made in the colour hierarchy, adjustment has to be made
in the size hierarchy so that the resulting version space does not cover this example. This is done by
lowering the upper marker of the hierarchy to exclude the huge-sized fruit (which is a kind of

� ����
��
fruit). Thus, the least upper bound is placed at the top of small, which is also the current position
of the greatest lower marker. With both the most general and the most specific version sets being
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light

yellow gigantichugegreen orange brown purple red little bigtiny mini

dark small large

colour size

Figure 3.10: Version space after presenting example 5

��� � � 
���� ) ��� � ��� ��� , a single rule which satisfies all given examples is obtained and the corresponding
final version space is given in figure 3.10. This learned rule states that if the size of a given fruit is��� � ��� and the colour of it is

� � 
���� then the fruit is safe to eat (but please do not apply this rule in real
life!).

The version space algorithm allows the construction of rules by generalising given examples.
However, this algorithm is practical only for problems in which the concept “more specific than”,
or “more general than”, can be identified explicitly. This is required so that a version space can be
represented with the hierarchies consisting of versions of the rule or rule set to learn. In particular,
within each hierarchy there must be a set of the most general versions and a set of the most specific.
The most specific version set summarises the information embedded within the positive examples
whilst the most general set summarises the information implicit in the negative examples. Satisfied
with this requirement, the algorithm is guaranteed to find, if any, learned rules that are consistent with
the observed positive and negative examples, independent of the order of presenting these examples
(except that the first example is required to be positive).

3.4 More General Points about Learning

Rule induction, as presented above, is rather simple in principle. Another form of rule discovery is
enjoying a vogue: genetic algorithms. The basic idea is that new rules are invented somehow (maybe
at random, according to some rule language) and then tested for explanatory power. There are endless
obvious variations on this theme, and some subtle ones.

Also, as indicated earlier, there are many other learning algorithms for concept learning. In fact,
variations in the setup of the version space algorithm can lead to different algorithms. Such variations
may address questions like

� is the learning supposed to happen as the examples are presented one by one, or can everything
wait until all examples are known?

� who says whether an example is positive or negative?

� is the information about the status of an example absolutely reliable, or can there be ‘noise’ in
the data?

� is the algorithm allowed to ask for certain kinds of example, or must it take what comes?

� is the concept expressible purely as a conjunct of conditions (‘red and big and heavy’) or purely
as a disjunct (‘red or big or heavy’) or neither?
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� . . . and so on . . .

The most general form of concept learning is very hard. After all, the specification, when dealing
with reliably classified examples, of

(<positive example 1>
or <positive example 2>
or .... )
and not (<negative example 1>

or <negative example 2>
or .... )

is a description of the concept, but not a very useful one, since it is not likely to apply to any unmen-
tioned examples. The task is a search problem through the possible expressions in the language. Even
a test for the success of such a search can be difficult to define. Good information about the semantics
of the language is usually needed to guide the search.

For further reading about machine learning, see Machine Learning by Mitchell [Mitchell, 1997],
or a short overview of ‘Machine Learning for Intelligent Systems’ by Langley [Langley, 1997].



Chapter 4

Software synthesis

4.1 AMPHION: putting together subroutines

There has been recent work on systems to aid in composition of programs for domain-specific tasks
(see the Amphion home page1).

The aim is to help scientific programmers get more out of the large libraries of routines they
often have available. This is a tool aimed to make available the knowledge of just what routines are
available, and what they do. Very few programs get re-used in any way, and the problem of working
out just what some routine is supposed to do is one reason why new programs get written from scratch,
even when something nearly suitable is already available.

4.1.1 Methodology

The system is designed to be used as follows. The user is guided in putting together a formal specifi-
cation of the problem at hand; a program that meets the specification is then assembled automatically
from the subroutines present. The aim is to let users who have the basic concepts of the application
domain to be able to describe the problem at the abstract level of specification, rather than in terms of
programming constructs. Thus there are generic components to the system (the specification acquisi-
tion guidance, and the program synthesis), and for particular domains, a domain theory is developed,
i.e. a KB about the domain for which an application is being developed.

Components

Thus the system comprises:

� Specification acquisition subsystem (generic) –
To build up domain characterisation.

� Program synthesis subsystem (generic) –
To assemble programs from routines and overall specifications

� Domain specific subsystem –
Theory of the domain, interface routines and automation routines for the synthesis system.

1http://ase.arc.nasa.gov/docs/amphion.html

26
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The first two components are generic (the same for each application). The specification acquisi-
tion system is used to build the domain theory; a characterisation of the software routines is needed,
together with an interface between the high-level specification language, and the programming de-
scription language. Now the synthesis module works out how to customise and combine the library
routines.

Interface theory

Synthesis routines

AMPHION

Desired Software

Software Library Routines

Domain Specification

Program Synthesis

Domain Theory

Figure 4.1: Amphion system architecture

4.1.2 Context

The system has been used successfully to develop routines to control astronomical observations, build-
ing on existing library of astronomical routines, developed by NASA.

Experience show that programs can be assembled much faster than by normal use of the library,
and users can use the system after a short tutorial.

The system uses deductive synthesis to put together programs automatically i.e., by finding the
derivation of a query in a particular logic, it is possible to derive a functional program that fits the
specification.

Specification and derivation

These are written in first order logic, augmented with lambda-calculus
(like ML fn x=> ... syntax).

The shape of a specification is:���������	� ��
�����	��� ��� 
�� � ����������	��� ����� 
	����� ��
���� ��� � � � 
 � � � � �� ���! �"�# � ���� �$ ����� # � ���! �%
where the conjuncts are either an equation defining a function, or a constraint (i.e. a statement of

the form & �('�" ) ����� ) '�) � ). Specifications are checked to see that they can be solved abstractly. If they
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cannot be solved, error information is returned to the user.

Deriving the program

Given a satisfiable specification, look to find a proof of a statement:

� 
 ����������������������� �� � � ��
�����	��� ) ��������	��� �
A derivation of a statement of this form gives directly a functional program that fits the specifica-

tion, ie a program � such that

� 
 �������� �� � � ��
�����	��� )�� ��
 ����	��� � �
Use a functional language where the terms correspond to routines in the target (imperative) pro-

gramming language; the functional program can get translated.
Only at this point are any Language specific routines needed; the system will generate variable

declarations and sequence of subroutine calls. So, the system could be easily adapted to different
programming languages.

4.1.3 Example problem

Suppose want to compute angle of sun light at a point on a planet’s surface visible from the satellite
bore-sight. We can specify this by a series of statements:

Let Solar-Incidence-Angle be angle between rays Surface-Normal and Ray-Intersection.
Let Surface-Normal be ray normal to Jupiter-Body at the point Boresight-Intersection.
. . .

These are the conjuncts of the specification, in the language of Euclidean geometry.
A diagrammatic representation is given to the user, and the program synthesised.

4.1.4 Domain Engineering

Amphion needs to know how to use the domain information (eg geometry).
The subroutines are assumed to be given, and correct w.r.t their own specification. So Amphion

has

� and abstract theory of domain (eg geometry);

� a concrete theory of what the subroutines do;

� an implementation relation between abstract and concrete theories.

The abstract theory is put together in an iterative process, involving the domain expert, and
Knowledge Systems expert. For the astronomical domain, it involved collaboration over some time.
For example, here it is necessary to choose a time system, and a notion of coordinate frame.

The abstract theory here has:

� types for objects (points, lines, ellipsoids, . . . )

� constructors (eg ray from point and direction)

� geometric operations (eg intersection)
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� . . .

together with other, non-definitional relations; e.g., need to know the relationship between times and
places corresponding to light travelling from one to the other.

The library routines have characterised also, in terms of programming language data-types (vec-
tors of reals, eg). Conversion functions are needed too.

4.2 Specification Acquisition

When putting together the individual problem specification, the user interacts via a GUI interface.
This builds on the domain theory syntax, and ensures the consistency of the input format.

Specifications may be put together in a top-down, or bottom-up style, according to taste.
The specification will be checked abstractly, to weed out some obvious problems; warnings are

given of over-constrained and under-constrained variables. Some overloading of functions and rela-
tions is allowed.

Constructing Domain Theories

We now look at tools to help construct a domain KB, and to specify problems in the domain.

Domain Theories and Specification Alongside descriptions of code capabilities, we want descrip-
tions of the domain that the final system is intended for (astronomical observations, computer vision
systems, telephone exchange software, etc.). Then, having built such a KB, we want also to support
the construction of a specification of a particular problem specification in the domain.

We looks at ways in which these two tasks can be aided, with reference to the Amphion system
and others. In each case, we assume there is an underlying logical formulation of the domain theory
and of the problem specification. There are several ways we can be helped here:

� Provision of graphical representation;

� Consistency checking: is the domain theory consistent on its own?

� Well-formed input: checking that the specification makes logical sense (e.g. only uses syntax
present in the domain theory).

This assumes that the task is specified in terms of the domain theory, and not in terms of computation
— this is more acceptable to end users.

Entity Hierarchy It’s common to categorise objects in the problem domain in a hierarchy, going
from more general to more specific classes (thus the class polygon is more general than quadrilateral
which is more general than rectangle, etc.

Logically, the classes correspond to single argument predicates; the relation between classes cor-
responds to logical implication (from the specific to the general). Thus:

����� �&� � � � � � � � ��� � � � ���
� � ��� 
��$	 � � ���� ��� � � ��	�
 � � � � � �
� �&� � � � � � � � �#� � � � �
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and we can deduce the relationship between rectangle and polygon. Notice that this allows us a version
of inheritance: any property we have of a polygon we can deduce will also hold for a rectangle.

We can also have several subclasses of a given class. It is natural to express this hierarchy in
graphical form; the two statements above suggest a directed graph with three nodes and two edges. A
GUI here can be used to build the KB statements as above simultaneously with entering the hierarchy
graphically.

Graphical/Logical Translations There are other places where there is such a close link between
graphical description and logical that we can translate from one to the other.

For example, we can think of an electrical circuit example; it is possible to build up circuit de-
scriptions graphically, and get a corresponding logical description automatically, in terms of a fixed
syntax such as one we saw (andg, org, . . . , output, input, connected).

Here we assume that the properties of the components are already known (or supplied by the user),
and the circuit specified via a GUI.

4.2.1 Consistency

We want to know that the domain theory, and the (non-negated!) specification query are consistent.
Why is this?

In a standard logical formalism, a KB is inconsistent if we can derive from it some query � and
also its negation ��� . This is already a problem for that query (which answer do we believe), but this
means we can derive any query ��� at all! (This is because � # ��� ����� always holds.) This makes
the KB useless. So we want to know about the consistency of our KB, if possible.

Testing for Consistency We can sometimes test for consistency of a KB in predicate logic.
For example, put it into clausal form, and look for a derivation of the empty clause. If this fails

(i.e. terminates using an appropriate strategy), then we can conclude the KB is consistent. Note that
this can be very expensive if done frequently; and we can’t guarantee that this will terminate, even if
the KB is consistent.

When the KB takes a particular shape (in its logical syntax), then consistency checking becomes
possible. For example:

� If only propositional connectives are used (still expensive);

� If only positive definite clauses are used (always consistent).

(A clause is positive definite if it has exactly one positive literal – this is the shape of a Prolog program
clause.)

4.2.2 Graphical problem specification

This is the approach used in Amphion to allow end users to specify a problem. Recall that there is a
background domain theory here of astronomical physics that the end user is comfortable with. The
end user wants to put together software to carry out a particular observation.

For example, consider trying to compute the angle between the vertical at the point on Jupiter
nearest Galileo, and the sun.
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Logical version One way is to start by saying:

Let
�

be the angle between rays � , � .
Let

�
be the point on Jupiter closest to Galileo.

Let � be the ray from
�

to the sun.
Let � be the surface normal at

�
.

Let
�

be measured in radians.
Let � be time at Galileo as a string.

The background theory should explain normal, angle etc.

Graphical version Here the user interacts by creating a graph that describes the relationship be-
tween the entities in question. This relies on the system already having the concepts represented in
logical form; the specification is thus built up in the course of interaction with the GUI.

The user enters some geometrical objects (planet, ray, angle), and constraints between them as
above. The user also specifies which values are inputs and which outputs. A configuration is then
generated by interaction between the user and the system. The basic operations are

� adding objects;

� deleting objects;

� moving edges between objects to define relationships;

� merging objects (to allow compound operations);

� declaring as input/output.

(The example above is shown at the end of this note in graphical form.) Because the syntax is
restricted here, Amphion can check specifications, for

� consistency – has a value been over-constrained (e.g. as the angle between
�

and
�

, and also
between

�
and

�
);

� completeness – is there enough information to compute output values (e.g. incomplete if
�

is
angle between � and � , and we only know one point on � ).

Feedback identifies the problematic components of the specification. This enables

� reuse of specifications;

� simpler editing of specifications to update;

� bug-free code (as long as Amphion is soundly implemented).

For example, can change input/output representation; reuse a grouped set of objects and relations;
change the input/output pattern.
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4.2.3 Experience

End users have found this approach congenial. Target end users can use such a tool after a one hour
tutorial.

Extension with new subroutines are easy. The domain theory can be easily extended with new sorts
of objects by system developers. However, development of initial domain theory was time consuming
– it has to be natural for the end users.

This work suggests that such graphical interfaces are helpful in building well-formed logical spec-
ifications, via the provision of a translation between the graphical language, and an underlying logical
representation.

Graphical Problem Specification in Amphion

The graphical representation produced by Amphion for the specification mentioned above is shown is
figure 4.2.3.
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Figure 4.2: Graphical Specification



Chapter 5

Ontologies

The development of the notion of ontology has marked recent work in Knowledge Engineering. We
look here at the underlying ideas: what are ontologies, and how are they intended to help with the
knowledge engineering activity? A good resource is Stanford’s Ontolingua work

5.1 Ontology – a fluid notion

There are several different characterisations, e.g.

� One of the early definitions: “An ontology defines the basic terms and relations comprising
the vocabulary of a topic area as well as the rules for combining terms and relations to define
extensions to the vocabulary”.

� ‘According to [Borst et al., 1997], ‘Ontologies are defined as a formal specification of a shared
conceptualisation” so that: “Conceptualisation refers to an abstract model of some phenomenon
in the world by having identified the relevant concepts of that phenomenon. Explicit means that
the type of concepts used, and the constraints on their use are explicitly defined. Formal refers
to the fact that the ontology should be machine-readable. Shared refers to the notion that an
ontology captures consensual knowledge, that is, it is not primitive to some individual, but
accepted by a group”

� Guarino,N. and Giaretta,P., in [Guarino and Giaretta, 1995] give a survey of definitions.

� From [Uschold, 1998]: “An ontology may take a variety of forms, but necessarily it will include
a vocabulary of terms, and some specification of their meaning. This includes definitions and
an indication of how concepts are inter-related which collectively impose a structure on the
domain and constrain the possible interpretations of terms. An ontology is virtually always
the manifestation of a shared understanding of a domain that is agreed between a number of
agents. Such agreement facilitates accurate and effective communication of meaning, which in
turn leads to other benefits such as inter-operability, reuse and sharing.”

� From [Fikes and Farquhar, 1999]: “We consider ontologies to be domain theories that specify a
domain-specific vocabulary of entities, classes, properties, predicates, and functions, and to be
a set of relationships that necessarily hold among those vocabulary terms. Ontologies provide
a vocabulary for representing knowledge about a domain and for describing specific situations
in a domain.”

34
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� Similarly, we could assume that an ontology is a logical theory that constrains the intended
models of a logical language.

This refers to the set of non-logical symbols (predicates and functions) of a logical language
used as ”primitives” for a particular representation purpose. An example of this signature is the
set of symbols what was called a conceptualisation in KR: on, above, clear, table. An ontology
in this case would provide the axioms which constrain the meaning of these predicates, like, for
example, ��	 ��� ) � � .

� A fancier view of Ontology occurs with the following proposal:

“An ontology is an explicit, partial specification of a conceptualisation that is ex-
pressible as a meta-level viewpoint on a set of possible domain theories for the pur-
pose of modular design, redesign and reuse of knowledge-intensive system compo-
nents.” [Schreiber et al., 1995]

5.2 Ontologies: what for?

A good reference here is “Understanding, Building, And Using Ontologies”, by Nicola Guarino
([Guarino and Giaretta, 1997]).

Knowledge Sharing and Reuse: how can knowledge be shared if it is represented in different
ways by different people? Some differences are just cosmetic (“color” or “colour”?), other differences
make communication hazardous or impossible.

For a particular domain, it looks feasible to agree on an underlying vocabulary. But what if we
want to share and re-use between different domains?

A distinction should be made between the Knowledge Level (thought of in terms of the abstract
concepts), and the Symbolic Level (given in terms of a particular formalisation of a domain, using a
particular vocabulary). The intention of recent work in ontologies is to try to work at the Knowledge
Level.

Can we get away from the way this knowledge is encoded, and look more directly at the relevance
relationship between the knowledge and the problem?

Knowledge Level and granularity An ontological commitment is made when the terms in which
a domain is to be conceptualised are decided. (Traditionally, philosophy uses this term to indicate a
commitment to the existence of corresponding entities; we remain agnostic on this.)

Ontological commitments always reflect particular points of view.
The aim is to pursue reusability across multiple tasks or methods systematically, even when

modeling knowledge related to a single task or method. This way, we hope in getting near to task-
independent aspects of a given domain, the more this knowledge can be reused for different tasks.

This can also be thought of in terms of the granularity of the domain knowledge. Different ex-
pertises (each with a fine-grained conceptualisation) can interact about a problem to which they all
contribute, provided they share a (coarse-grained) conceptualisation involving the same basic knowl-
edge related to the domain structure.

This suggests:

� When modelling domain knowledge with a single task in mind, reusability may be pursued by
paying the cost of higher granularity.
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� The expected gain from the higher generality is that resulting knowledge base, which can be-
come (part of) a sharable ontology.

This suggested research in a discipline like formal ontology appears evident. Say various papers
by Guarino on connections between formal ontology, conceptual analysis and knowledge engineering,
aiming to establish the foundations of the emerging field of “ontological engineering”.

5.2.1 Some kinds of ontologies

Ontologies can be used in many places, as the following suggests.

� Application ontologies: associated with a particular task or problem;

� domain ontologies: associated with a problem domain;

� generic ontologies: common across problem domains;

� method ontologies: associated with problem-solving

� representation ontologies: associated with the method of representation itself. See e.g. those
defined in Ontolingua’s Frame Ontology ([Gruber, 1993]).

In terms of the KR module, we can associate this with meta-level descriptions of the representa-
tions relevant to the previous kinds of ontology. (This is a disputed analysis, however!)

5.2.2 The interaction problem

One problem ontologies should solve is the following:

Representing knowledge for the purpose of solving some problem is strongly affected
by the nature of the problem and the inference strategy to be applied to the problem.
([Bylander and Chandrasekaran, 1988])

However, the interaction problem does not hold to the same extent for all concepts; we can there-
fore distinguish between an ontology library, that contains more or less reusable knowledge across
different applications, and an application ontology, containing the definitions specific to a particular
application. This indexing scheme can surely simplify the construction of application ontologies

However, the important question is the methodology used to update an incomplete ontology library
while building a particular application ontology. Typically, we are working on an application, and
introduce new terminology. How can we limit the effects of the interaction problem, separating the
domain knowledge from the method knowledge?

To this purpose, the relevance relationship between domain concepts and methods must
be captured. With the explicit introduction of a method ontology, this relevance rela-
tionship can be represented by means of a “mapping relation” between the application
ontology and the method ontology, where the role played by each single concept within a
particular method is made explicit. In this way, the effects of the interaction problem can
be limited by representing the nature of the interaction, rather than assuming its effects
as intrinsic to the concepts being modeled. ([Guarino and Giaretta, 1997])
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Figure 5.1: Specialising ontologies
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Updating ontology: an example

In a slightly different approach, consider the set-up in figure 5.1.
The application ontology is built by specialising both the domain and the method ontology.
The concept CASNET-cost is the cost of an observation leading to a pathophysiological state,

which plays the role of the cost of an hypothesis within the method “ranking by weight-to-cost-ratio”.
It is placed in the application ontology because it plays a specific role in CASNET’s ranking

procedure. The ontological requirements of this procedure are represented explicitly in the method
ontology, and the CASNET-specific cost satisfies the range restriction of the attribute has-cost
of the concept hypothesis belonging to the method ontology.

According to this view, all concepts appearing in the application ontology are specialisations of
both the domain ontology and the method ontology. Focusing on the application ontology amounts to
highlighting those concepts which are relevant for a particular application, being specialisations of its
method(s) and its domain: the application ontology is just a view of the more general ontology.

NB: the left part of the diagram (the domain ontology) can be considered as relatively static, while
the bottom and right parts change when the problem solving strategy changes. In this way, the ISA
arcs linking the application ontology to the task ontology “can be seen as attributing context-specific
semantics to domain knowledge elements” ([Schreiber et al., 1995]). For a given application ontology,
it is possible to give a semantic account similar to that we saw for predicate calculus.

5.2.3 How to make use of Ontologies

We want to get round the interaction problem.

� Ontologies should be described at the knowledge level – and sometime their full translation to
the symbol level is not even necessary.

� Their purpose is to characterised a conceptualisation, limiting the possible interpretations of the
non-logical symbols of a logical language in order to establish consensus about the knowledge
described by that language.

The Knowledge Acquisition process should involve domain analysis.
Our example uses an explicit representation of task and method knowledge, in order to system-

atically analyse the knowledge roles played by the domain knowledge within a particular problem
solving strategy, resulting in a very simple link between the application ontology and the ontology
library, aimed to maximise abstraction, reusability and semantic coherence.

The whole enterprise assumes some common agreement about meaning between various users
and sharers of knowledge; despite getting away from the symbolic level, sharing involves common
understanding of some representational devices.

We can get help from linguistic resources such as thesauruses; such resources can help with build-
ing ontologies by helping to find generality; by identifying ambiguities; and enforcing readability and
consistency.

5.3 Using Ontologies: some examples

There are many areas where ontologies are being exploited.
One area where work is ongoing is in Natural Language. There typically agreement is sought on
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� linguistic categories,

� roles,

� and common-sense objects.

Various projects have built such ontologies for a large part of common (English) vocabulary; eg
the CYC project (Lenat)

For another example, Molecular Biology looks for some consistency between various models and
data (especially with the advent of the Grid and e-Science). For example, the Riboweb project at
Stanford has built an ontology for ribosomes, models, data, reports . . .

Here scientists want to describe molecular structure, experimental data, etc. There is a lot of work
to encode by hand the relevant literature.

As to be expected, there is a trade off in general between usability and reusability. Experience
suggests that large, sparse ontologies are good for re-use, since they make few commitments, and
cover large domains. However,small but detailed ontologies are more immediately useful, since they
make commitments specific to the domain of immediate interest.

Example – Documents

An ontology for documents should say what sorts of properties are present, and what related sub-fields
are involved.

We can have a hierarchy indicated informally as follows:

Document with attributes
– publisher
– title
– date
with subclasses

Book with attribute
– ISBN
with subclass
Edited book
. . .
Periodical with attributes
– Volume
– Number with subclass
Journal
. . .
Magazine
. . .

Ontology for business organisations

For details here, see the Toronto Enterprise Integration Laboratory.
This deals with roles in business, e.g. organisation unit, organisation position, agent, goal, policy,

authority, commitment, empowerment, achievable goal, etc.etc.
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5.3.1 Features of Ontology

An ontology can be given in terms of classes, frames, etc. Here

� class is a distinguished set of objects

� frame is any object

� instance is a class member

� slot is a 2-place relation

� facet is a 3-place relation between frame, slot and value

� constraint is a statement constraining possible interpretations of a frame.

These all fit into predicate calculus, in the sense that a predicate calculus translation can be carried
out in a fairly obvious way.

Ontologies vs OOP

Building an ontology is a bit like building an OOP.
Note however:

� Classes and objects in a program deal with data structures.

� Classes and objects in an ontology deal with features of the world.

Still, there can be a correspondence between suitable data structures and definitions in an ontology.

Example In OOP, code reuse is encouraged. We can extend a class, eg:

class circle {
int x; int y; int height; }

class ellipse extends circle {
int width; }

Note that, while this is legal (if ugly) in OOP, this does not correspond to the use of subclasses in
ontologies; ellipse is not a subclass of circle, in our usual understanding of geometry.

We should also avoid commitment to programming choices in the ontology; e.g., we do not want
to say that a name is a string of a certain maximum length (even if that is how it is implemented). We
keep to a more abstract view – a name is likely to have many properties, anyway.

We should not assume any properties of the implementation of the application (e.g. about relative
storage locations of information).
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5.3.2 Tools for ontologies

The Ontolingua system provides support for ontology building and sharing.
It provides a suite of tools for constructing and editing ontologies, together with a library on on-

tologies. It allows the user to give axioms about a given domain in logical form (using the Knowledge
Interchange Format, KIF); eg, to encode

If any two animals are siblings, then there exists someone who is the mother of both of
them.

use a predicate calculus representation as follows:

(=> (sibling ?sib1 ?sib2)
(exists (?mom)

(and (has-mother ?sib1 ?mom)
(has-mother ?sib2 ?mom)))

This makes use of the KIF format already mentioned.
In general, however, the logic representation is generated from the frame-based representation by

a uniform mechanism. So, simply editing the frames, slots etc will build up the logical representation.
The aim of Ontolingua is to allow, when possible, systems to be built by reusing components

of existing libraries; the definitions there can be extended. Note that different extensions can be
incompatible – the aim is that groups of users may work simultaneously on constructing an ontology,
with support for spotting and dealing with such incompatibilities.

To this end, several design principles are adopted:
� While the presentation is OO-based, the corresponding representation is in predicate calculus.

� New objects can be added.

� Existing ontologies can be included, and

� they can be extended (but not diminished!).

The representation system itself is built round the so-called frame ontology:

Class with attributes
– AllInstances
– Arity
– SubclassOf
– SubclassPartition
ClassPartition
Facet
Thing

Users are expected to query the ontology server to determine such things as:
� is a term defined?

� what is the relationship between terms?

� to manipulate the contents of the ontology.

We can use this within browsing and editing tools, ontology analysis tools, knowledge based
applications, etc, etc.
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5.3.3 Summary
� Ontologies provide a framework for interactive use and reuse of Knowledge Bases.

� Computer tools help us to edit and manage large ontologies, following principles of representa-
tion.

� An OO-style presentation to the user corresponds to a logical representation with a semantic
reading, and where deduction can be implemented.



Chapter 6

Reasoning Maintenance

6.1 Introduction

Sometimes it is necessary to make guesses or assumptions in one’s reasoning, but those guesses or
assumptions might turn out to be wrong so that all that followed from them becomes potentially
invalid. In what is called a monotonic logic, new conclusions can never invalidate what is already
known or has been deduced; in non-monotonic systems they can. How then, does one keep track of
how new deductions depend on earlier information?

The cheap and nasty, but sometimes workable, approach is to attach a ‘time tag’ - usually this
just means a sequence number - to each deduced fact or rule. (Note that a rule here does not have
to be a production rule but can be a procedure, a constraint or some other atomic form of knowledge
representation.) If a fact/rule added first at time � is, in subsequent reasoning, invalidated, then just
erase it and also anything deduced since then. Just restart all reasoning from time �

���
, adding just

enough to stop following the same line of reasoning as before. This is clearly uneconomic:

Time T: add "earth is flat"
Time T+1: add "Edinburgh is the capital of Scotland"
Time T+2: contradict "earth is flat"

– it is wasteful to erase the second fact which does not depend on the first. Better approaches to the
problem are described below.

In a truth or reasoning maintenance system (alias TMS or RMS), facts and rules are recorded as
labels of nodes. The node names are a convenient shorthand for these facts and rules. A node can
have zero or more justifications, a justification being an associated record describing how that fact or
rule came to be known. Thus, a network of nodes and the interlinking justifications gets built up, like
a tower of scaffolding. Some of this tower is rooted in unequivocal facts, but partly it is rooted in
potentially invalid assumptions.

There are two main flavours of TMS. In Doyle’s formulation [Doyle, 1979], a tower of deductions
gets built, but sometimes the reasoning engine may signal that a certain deduction cannot be sustained;
that part of the tower must fall. The TMS’s job is to decide which piece of the scaffolding might have
given way to cause this, and usually there are several assumptions that might take the blame. The
TMS blames one and then demolishes such of the scaffolding that depends on it, in such a way
that if the blame is later found to have been wrongly assigned all the demolished scaffolding can be
resurrected without further work by the reasoning engine. In de Kleer’s formulation [de Kleer, 1986],
all possible scaffolding is built up from the initial facts and assumptions by forward chaining, so that

43
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the TMS discovers all the deductions that might be supportable by some kind of scaffolding. For each
such deduction it records all the sets of assumptions that could be used to support it. This chapter
introduces these two reasoning maintenance systems, whilst the module focuses on the latter which is
far more popular in use now.

6.2 Doyle’s TMS

In this version, a justification may be valid or invalid – usually invalid justifications started life as valid
ones. Any node that has at least one valid justification is said to be IN (that is, ‘in the set of believed
nodes’) and those with no valid justification are said to be OUT (‘of the set of believed nodes’). In
practical systems, OUT nodes that have no use are usually erased after a short while to save space.
Note that an OUT node may have a use, for instance it may be mentioned in a valid justification of an
IN node, since it may happen that one thing is believed because another is not.

In this type of TMS, there are two kinds of justification:

� Support List justifications, of the form

(SL INlist OUTlist)

where INlist and OUTlist are each lists of nodes. The justification is valid if all the nodes in the
INlist are IN, and all those in the OUTlist are OUT.

� Conditional Proof justifications, of the form

(CP node INlist OUTlist)

which is valid if node is IN whenever all the nodes in INlist are IN and all those in OUTlist are
out.

Here are some observations about these:

� A fact or rule can be made an axiom by giving the node a justification of

(SL () ())

so that it is permanently IN.

� Nodes that have a non-empty OUTlist are assumptions; there are (at least apparent) conditions
under which they could be contradicted.

� CP nodes are useful in supporting deduced rules, e.g.

Node Fact/Rule Justifications
	 � A maybe none valid
	 � B maybe none valid
	�� if A then B (CP 	 � ( 	 � ) ())
	�� C maybe none valid
	�� if C and A then B (CP 	 � ( 	 � 	 � ) ())

� A reasoning maintenance system is not a reasoning system; it is a slave of a reasoning system.
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A TMS allows default reasoning. For example, suppose that
� � ����� � � are nodes representing

a range of choices, e.g.
� � represents ‘lecture on Monday’ and

���
represents ‘lecture on Sunday’.

Imagine that node � is a rule that calls for the making of a default choice. Node
� � can be made the

default by giving it a justification of the form

(SL ( � ) (
� � � � . . .

� ���� � ����� . . .
� � ))

so
� � will be IN if � is IN and there is no reason to believe in the competitors of

� � (that is, they
are OUT). Sometimes it is impossible or inconvenient to enumerate the competing choices like this.
Then a node

�
can be made the default by a simpler expedient. Create, if it doesn’t exist, a node to

represent the negation of what
�

represents; call this � . Then
�

is made the default by giving it the
justification

(SL ( � ) ( � ))

and giving � various justifications such as

(SL (
� � ) ())

for those
� � explicitly known to be competitors of

�
. Thus, if any

� � is IN, then E will be IN and
�

will be OUT. Otherwise,
�

will be IN whenever � is IN and � is OUT. As an example, consider the
question of a person’s salary:

Node Fact Justifications
	 � salary=10000 (SL (. . . ) ( 	 � ))
	 � salary �� 10000 (SL ( 	 � ) ()) (SL ( 	 � ) ())
	�� salary=9314 . . .
	�� salary=11206 . . .

Therefore 	 � will be IN whenever a choice is required, unless any of 	 � , 	 � or 	 � is IN for some other
reason.

A TMS permits dependency-directed backtracking, that is, it allows the reasoning system to decide
to retract some assumption without setting up contradictions caused by continuing to believe any
consequence of a retracted assumption. It is worth noting that the TMS itself has no built-in notion of
inconsistency; it is up to the reasoning system to detect them and to let the TMS know.

The algorithm typically used to implement this type of TMS is mildly ingenious. Imagine that �
is some node representing a fact or rule that the reasoning system finds does not hold, that is, it is a
contradiction. The algorithm is:

� Trace the dependencies backward from N (which is currently IN and causing trouble) to find
the set of assumptions that support it. Find the maximal ones – those that do not support other
assumptions. Suppose that these are nodes 
 � ����� 
 � .

� Create a new node � � (called a “no good”) to represent the occurrence of the contradiction,
e.g. the rule

not ( 
 � and . . . and 
 � )

Give it justification

(CP � ( 
 � .. . . 
 � ) ())
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which means it is currently IN.

� Rather than being sophisticated, just pick a culprit at random from the set of maximal assump-
tions 
 � ����� 
 � . The aim is to force it OUT, so that N will also be OUT. Suppose that the culprit
chosen is 
 � .

� 
 � is an assumption, so has a non-empty OUTlist in a valid justification. Find the set of nodes� � ����� � %
which are currently OUT, such that if any one came IN than 
 � would be OUT. Pick

one, say
� � .

� Give
� � a new valid justification, so it comes IN. A suitable justification would be

(SL ( � � 
 � . . . 
 � �� 
 ����� . . . 
 � ) (
� � . . .

� � �� � � ��� . . .
� %

))

Now
� � will be IN, so 
 � will be OUT, so � will be OUT. If any other

�
comes in, or if any

other 
 goes OUT then
� � will be OUT. This may bring 
 � back IN without bringing � back

IN, so the arbitrary choice of 
 � is not irrevocable. Also, the node � � records the essence
of the contradiction, so that the reasoning system will not be troubled with that particular one
again, at least in that form.

A small example may give the flavour. Suppose that a reasoning system is trying to solve a
timetabling problem, and assumes that some lecture is going to happen at 10am at Forrest Hill:

Node Fact Justifications
	 � time=10am (SL () ( 	 � ))
	 � time �� 10am . . .
	�� place=FH (SL () ( 	 � ))
	�� place=HPSq . . .

Currently, the IN set is
� 	 � , 	�� � . Suppose that the reasoning system now finds the problem:

	 � (the snag) (SL ( 	 ��	�� ) ())

That is, some node 	 � turned up, assuming 10am at Forrest Hill, and the reasoning system then found
out that this was not possible. The IN set is now

� 	 � , 	�� , 	 � � . The maximal assumptions for 	 � are
	 � and 	 � . To clear up the trouble, introduce the “no good”

	�� not ( 	 � and 	 � ) (CP 	 � ( 	 ��	�� ) ())

Pick on 	 � . It has one OUT node, 	 � , which can be brought IN to take it out. Thus, give 	 � the
justification

	�� place=HPSq (SL ( 	�� 	 � ) ())

The IN set is now
� 	 � , 	 � , 	 � � ; the problem has been cured. The existence of 	 � and 	 � stops

the reasoning maintenance system from allowing the reasoning system to make the same mistake in
future.

In fancier applications, the reasoning system may be used to help the TMS make a more rational
choice of culprit than just picking one at random. However, the entire algorithm is not flawless.
Suppose that the TMS has been asked to force some newly-discovered contradiction � to be OUT,
and the nature of the contradiction is that it depends on, say, an assumption (not � ) which is currently
IN. Arranging for (not � ) to be OUT may cause � to go OUT, by the algorithm, but then this may
cause � to come back IN thanks to the rule ��� (not � ) being always IN. Thus the TMS may loop
forever. Although it would be easy to build in a check against this simple kind of flaw, there are much
more elaborate forms of it that can be very hard to spot.
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6.3 de Kleer’s ATMS

In de Kleer’s version, named assumption-based TMS (ATMS), justifications are always valid. They
are made from rules and facts which hold with some sets of assumptions. ATMS does not care about
whether any node or assumption is actually believed – there is no question of IN and OUT. Instead, it
records only how deductions would depend on any assumptions. That is, the job of ATMS is to record
under what sets of assumptions any conclusion holds.

In ATMS, each node has, in addition to the tag showing what it stands for (what you would
normally call its label), something else which de Kleer confusingly terms a label; this is a set of sets
of assumptions. The node follows from any of such sets of assumptions. If a node turns out to be
contradictory, according to the reasoning system, then the ATMS notes that all the sets of assumptions
labelling it lead to a contradiction. The convenient way to do this noting is to have a node which
stands for ‘false’, and to add any such contradictory sets to its label. For each node, a check is made
such that none of its sets of assumptions is a superset of any other; if so, it should be deleted. The
ATMS does this to ensure that no superfluous assumption appears anywhere in a set within any label.

To have a look at the idea of how ATMS functions, suppose that early on in the deductive process
(performed by a reasoning engine) there have been nodes for assumptions � � ����� � � , and that there are
already two nodes 
 and � , with labels as follows


 � � � , � � � � � � , � � �
�

� � �
� � � � , � � � � � � �
For instance, the label of node � means that � holds if � � does, or if � � and � � do, or if � � does.
Suppose also that the only contradiction so far discovered is that � � and � � together lead to an in-
consistency. This means that the label of the specific ‘false’ node currently contains just one set of
contradictory assumptions:

� � ��) � � � .
Now, the reasoner wants to add another justification, that 
 and � imply � . The ATMS records

the justification, and from the labels for 
 and � creates a new label for � as follows (if � is new, a
node for it is first created):

� Find the collection of pairwise unions of sets of assumptions, with one set per pair from each
label (akin to the cross-product of the labels of 
 and � ); this is

(1)
� � � , � � �

(2)
� � � , � � , � � �

(3)
� � � , � � , � � �

(4)
� � � , � � , � � �

(5)
� � � , � � , � � �

(6)
� � � , � � , � � �

� Remove any which has another as a subset. In this case, sets (2), (3) and (4) each have (1) as a
subset. This step removes any superfluous dependence on assumptions. Thus only sets (1), (5)
and (6) remain.

� Remove any set which has a contradictory set of assumptions as a subset of it. Since
� � � , � � � is

already known to be contradictory, this disposes of set (6), leaving sets (1) and (5) to form the
new label for � .
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� If � is new, this becomes its label. If not, this label is blended with the previous label: take the
union of the two labels, delete any set in this union which has another member in the union as a
subset of it. Since the new and old labels were already consistent there is no need to go looking
for sets which have contradictory subsets, this time.

� If the whole process changes the label for � , and recorded justifications show that other nodes
depended on � , then the label changes have to be propagated forward to those other nodes, and
on from them, and so on.

In the above illustration, if, at a certain stage, � is found to be a nogood by the reasoning system
(that is, every set of assumptions labelling it indicates a contradiction), then each member of its label is
added to the label of the specific node standing for ‘false’, and all such members, and their supersets,
are removed from the label of every other node. Any set of (inconsistent) assumptions being a superset
of another within the ‘false’ node’s label itself is also removed.

ATMS has two advantages. First, all the consequences of a set of assumptions can be explored to-
gether; no backtracking is involved, and the system is not striving to maintain one mutually consistent
set of assumptions as in Doyle’s TMS. This suits certain kinds of application. Second, it can be very
efficiently implemented, since the main operations involved are set operations such as union and sub-
set checking. If sets are represented as bit strings these kinds of operations can be performed directly
by hardware. The obvious disadvantage is that the system is driven by forward-chaining reasoning,
so there is no natural progression towards a particular desired goal.

There is considerably more to ATMS than this; this section has only covered the basic idea. For
example, in some applications it might be desirable to constrain the ATMS to considering only those
sets of assumptions which contain at least one, or perhaps exactly one, of a given set (of particular
assumptions). This calls for adding new justifications automatically whenever the ATMS throws up a
set that violates such constraints – this is much more economical than adding all the justifications that
these constraints entail right from the beginning. See various papers by de Kleer in the AI Journal for
further details.

6.4 A Caution

In practice, whatever the flavour of TMS, there are further complications to consider. For example,
consider the following rule:

if X is burning
and X is on Y
and <..various physical conditions

indicating Y will char..>
then Y is charred

Even when ‘X is burning’ is no longer true, the conclusion ‘Y is charred’ will be true. However, this
conclusion might be marked as OUT in Doyle’s TMS or retracted in de Kleer’s ATMS along with the
retraction of ‘X is burning’. In this case the trouble really lies with the rule rather than the TMS, but
the example does suggest that there are special difficulties in handling time-based rules in which the
effect lasts even when the cause does not. Some solutions to this can be taken from recent work on
automated planning and/or temporal reasoning. They are not described here, however.



Chapter 7

Model-Based Reasoning Systems

7.1 Introduction

One of the recent trends in developing intelligent problem solvers has been the building of model-
based reasoning systems. Imagine that you have built a knowledge-based system to diagnose faults
in coin-in-the-slot telephones and to suggest cures. If the symptom is that your money is not returned
after an unsuccessful call, bash the telephone sharply on its left-hand side at a point about two inches
lower than the level of the coin slot. However, when BT1 replaces these machines with slightly more
modern coin-in-the-slot boxes you would need to amend the knowledge-based system. It would be
nicer if the system could reason out for itself where you should hit the box, by considering a model of
the mechanism. This, crudely, is the idea behind the model-based systems.

The term ‘model’ may refer to the description of the structure and behaviour of a physical mecha-
nism. It could equally be a description of a social or business process, or that of biochemical balances
within the human body. The common idea behind all such descriptions is that a model represents a
simulation of something, a simulation which is faithful and complete at some sensible level of detail.
For example, a model of how an electric refrigerator works need not be at the level of the physical
layout of the parts. Rather, it might be in terms of how an electric motor compresses a gas, whose
later expansion causes the gas to cool and the cooled gas then circulates through pipes within the
refrigerator drawing heat out of it by conductivity through the walls of the pipes, and how convective
cooling cools those parts not close to the internal pipes.

Diagnosis has been, and still remains, the largest application category of most intelligent appli-
cation systems. This chapter is, therefore, focused on discussions of model-based systems which
perform diagnostic tasks. Although it addresses the issues of finding faults in physical systems the
techniques introduced can be applied to other domains.

To determine why a physical system has not worked correctly compared to its design intention,
it is useful to know how it was supposed to work in the first place. Reflecting this viewpoint, the
basic paradigm of model-based diagnosis can be best seen as the interaction of observations, obtained
from the physical system under diagnosis, and predictions, generated from the system’s model (which
is usually qualitative). Observations indicate what the system is actually doing whilst predictions
indicate what it is intended to do. Thus, this approach essentially depends on the use of an explicit
structured model for behaviour prediction. Whenever there exists a difference, or a discrepancy,
between observations and predictions, it is presumed that the system is not working correctly and
certain faults have occurred within the system. Given detected discrepancies a model-based diagnostic

1BT = British Telecom
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system is set to identify, ultimately, which of the system components could have failed and led to such
discrepancies.

It is not unusual for there to be multiple faults simultaneously. One of the drawbacks of early
rule-based approaches was an unwarranted assumption that any one symptom had a single cause,
so when one cause had been diagnosed all the symptoms it accounted for could be ignored when
trying to account for the remaining symptoms. Many model-based approaches, however, provide
a reasonably successful method for trying to handle multiple faults. A representative of these, the
General Diagnostic Engine (GDE) [deKleer and Williams, 1987] is introduced in the next section, in
terms of isolating multiple fault candidates efficiently via the use of an ATMS. GDE also provides a
mechanism for differentiating among the set of possible candidates, which incorporates probabilities
and information theory into a unified framework. An introduction to this second part of GDE is given
in section 7.3.

Since its birth, GDE has been widely applied and tested in a variety of problem domains, and its
limitations as well as its strengths in performing diagnosis have been extensively studied in the litera-
ture. As a result, many improvements and extensions have been made to GDE (see [W. Hamscher and de Kleer, 1992]).
Among them, one of the best known is the GDE+ system [Struss and Dressler, 1989]. An overview of
this system is presented in section 7.4, where another extended system, Sherlock [de Kleer and Williams, 1989]
is also outlined to show the diversity of different modifications possible.

7.2 Postulation of Multiple Faults

GDE is intended to isolate or locate multiple simultaneous faults in a device consisting of inter-
connected components. It makes a number of important assumptions:

� Faults are in components rather than in any interconnections (though interconnections could be
represented as components themselves).

� The device representation is faithful; there are for instance no interconnections in the real device
which are not also present in the model.

� Faults are not intermittent.

To illustrate the kind of problem it can deal with, consider a much-used example system as shown
in figure 7.1.

According to the design of this device, the three multipliers, � � )�� �
and � � are each supposed to

multiply their two inputs, and the two adders, 
 � and 
 �
are supposed to add their two inputs. Thus,

given the inputs:

 �	� ) �

�	� ) � � � ) � � � ) � � �

to a working version the result will be:

� ����� ) � �����

However, if
� � ���

instead it might be suggested that the problem was that � � was only outputting
4 instead of 6. The trouble is that this is not the only diagnosis, even though it makes good sense to
consider it first. The difficulty then is to find the others. Another might be that �

�
was outputting 4,


 � was working whilst 
 �
was faulty but just compensating for the error made by �

�
. Another could

be that �
�

was erroneously outputting 4 and � � was erroneously outputting 8, but the two adders
were working properly. Of course it is even possible that every component is faulty!
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Figure 7.1: A familiar circuit

The idea behind GDE is to treat the initial observations:


 � � ) �
� � ) � �	� ) � � � ) � � � ) � ����� ) � �����

as facts and to treat statements such as ‘ � � is working correctly’ as assumptions (with a set of as-
sumptions termed an environment for easy reference). An ATMS can then be used to keep track of
what deductions depend on what environments. For example, for notational simplicity (and hopefully
without causing confusion), let � � stand for the assumption that the multiplier � � is working, let 
 �
stand for the assumption that the adder 
 �

is working and so on. Thus, the following extra ‘nodes’
can be generated under the assumptions given in {...}, though not necessarily in this order:

n1:
� � � � � � �

n2: �
� � � � � �

n3: �
� � � � � �

n4: �
� � � � � ) 
 � � (from n2 and � �����

)

n5:
� � � �

�
� ) 
 � � (from

� �����
and n2)

Note that already n5 conflicts with n1, so it cannot be the case that all of � � )�� �
and 
 � are working.

From this, GDE deduces that at least one of the components � � )�� �
, and 
 � is faulty and introduces

the notion of minimal candidates:
�
� � ��) � � � ��) � 
 � � . The process can continue:

n6: �
� � �

� � ) 
 �
� (from
� �����

and n1)

This produces the same conflict as before. The process continues:

n7: �
��� �

� � ) 
 � ) 
 � � (from � �����
and n6)

Now n7 disagrees with n3, so it cannot be the case that all of � � ) 
 � ) 
 � and � � are working. This
is a different conflict. Given the following two assertions:
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� By n5 and n1 or n6 and n2, at least one of
�
� � )�� � ) 
 �
� is faulty.

� By n7 and n3, at least one of
�
� �,)�� �#) 
 � ) 
 � � is faulty.

GDE deduces that at least one of the following sets of components is faulty, and treats each of them
as an updated minimal candidate:

� 
 �
��) � � � ��) � 
 � )�� � ��) � � � )�� � �

The reason behind this deduction can be best shown by examples. The set
� 
 �
� is considered a

minimal candidate because 
 � belongs to both conflicts in the above two assertions, if it is faulty both
assertions are explained. Similarly, the set

� 
 � )�� � � is considered a minimal candidate because if 
 �
and �

�
are faulty simultaneously they jointly explain both assertions. However, unlike 
 � , one and

only one of
� 
 � )�� � � being faulty does not form a consistent explanation for these two assertions.

For this simple device, given the above minimal candidates, it should be clear that attention is to
focus on � � or 
 � . This suggests that the value at

�
should be measured, in order to better isolate

the possible faults. The measured value of
�

becomes a new fact, and the process continues.
Electrical engineers will realise that this whole process is a bit suspect. To start with, a common

kind of fault is for there to be an open (broken) connection somewhere or for there to be a spurious
extra connection caused by faulty manufacture; the underlying assumption that any fault lies within a
component is too restrictive. Further, even if the fault is in a component it can happen that components
fail in more interesting ways than just producing the wrong output for given inputs. For example, if
� � fails it may drag input � down to 0, causing an input to � � to be 0 too. This could perhaps
be handled within GDE using a more elaborate scheme of representation and assumptions. A more
serious problem is that the number of deductions from assumptions and other intermediate deductions
is going to proliferate exponentially as the circuits get more complicated. GDE brings in component
failure probabilities in an attempt to deal with this, by ignoring any combination of faults which seems
too unlikely to pursue in the meantime [de Kleer, 1990].

7.3 Choosing Measurements for Candidate Discrimination

Using the above method for fault candidate generation, or indeed one of the many other model-
based techniques, can lead to a quite large number of postulated faults. In order to reduce the re-
maining candidates to make the diagnostic result practically more useful, a diagnostic system may
use further measurements to differentiate amongst the candidates. GDE offers a method for choos-
ing the best measurements which would most effectively distinguish between the remaining candi-
dates. A best measurement in this context is one which will, on average, allow the discovery of
the actual fault(s) in the physical system using a minimum number of subsequent measurements
[de Kleer and Williams, 1989].

Before showing how to choose the best measurements, it is useful to examine what consequences
a possible measurement may bring to the set of generated candidates. Recall that, in GDE, each
model-based prediction is treated as a fact and stored as a node in the ATMS with the set of minimal
environments supporting it as its label. Here, each environment is a set of assumptions made to support
a partial, behavioural description of the physical system. For instance, a value � of a variable

�
, which

is predicted under the environments �"� ) � � ) � � � ) � � , can be represented by

� � �
� ) � ���,) � � ) � � � ) � � ���
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In general, a variable
�

may have more than one predicted value, each having a set of supporting
environments. If

�
is measured to be � then the supporting environments of any value different from

it are necessarily conflicts, since they did not lead
�

to taking � as its true value. If, however, the
measurement is not equal to any of the predicted values of

�
, then every supporting environment for

each predicted value of
�

must be a conflict.
Consider the electrical device shown in figure 7.1 again. Recall that, given the facts that 
 �

� ) �
� � ) � � � ) � � � ) � � � ) � � ��� ) � � ���

, and the identified conflicting environments
that led to contradictory predicted and/or measured values for individual variables (e.g. environment� 
 � )�� � � or

� 
 � ) 
 � )�� � � led to
� � �

, while environment
�
� �
� resulted in

� � �
), GDE

deduces the following minimal candidates, meaning that at least one of these sets of components must
be faulty: � 
 �
��) � � � ��) � 
 � )�� � ��) � � � )�� � �

Suppose that a new measurement is made at point
�

. This measurement will result in three
possible outcomes:

�
� � �

, in this case environments
� 
 � )�� � � and

� 
 � ) 
 � )�� � � do not lead to a contradictory
value for

�
, but

�
� �
� does and forms a conflict (as it supports

� � �
rather than

� � �
), the

minimal candidate now becomes
�
� �
� .

�
� � �

, in this case
� 
 � )�� � � and

� 
 � ) 
 � )�� � � are conflicts and the new minimal candidates
are
� 
 �
� , � � � )�� � � and

� 
 � )�� � � .
�

� �� �
and

� �� �
, in this case

� 
 � )�� � � , � 
 � ) 
 � )�� � � and
�
� �
� are conflicts and the

minimal candidates are
� 
 � )�� �
� , � � � )�� � )�� � � and

� 
 � )�� � )�� � � .
The above example illustrated the effect of an appropriate new measurement upon the discrimina-

tion between possible fault candidates. For this example, measurement at
�

is selected to explain the
potential consequences since, intuitively, measuring

�
is likely to produce the most useful informa-

tion to further isolate the faults. This is because the two (more probable) singleton candidates
� 
 � �

and
�
� �
� are only differentiable when such a measurement is made. For this toy device, it is feasible

to recognise this by looking at the circuit diagram. However, when the system structure becomes more
complex, how can a best measurement point be automatically chosen?

GDE gives an answer to this question by adopting a one-step lookahead strategy based on Shan-
non’s information theory. This strategy requires the consequences of each possible measurement to be
analysed with respect to a given set of (minimal) fault candidates, in order to determine which mea-
surement to actually make next. The following entropy function is used as the basis for the analysis
of the possible consequences of hypothesised measurements:

� �
�
� � � ��
 �(� � �

where
� � denotes the probability that the

�
-th (remaining) candidate would be the actual culprit given

the hypothesised measurement outcome.
This entropy function has several important properties. In particular, if every candidate is equally

likely then it will reach a maximum value, indicating that little information is available for differen-
tiating among the candidates. If, however, one candidate is more likely than the rest this function
will approach its minimum. Thus, the best next measurement should allow the minimisation of the
expected entropy of candidate probabilities. From this, and by substantial algebraic manipulations,
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it can be derived that the best measurement is the one which minimises (over all possible measuring
points

� � within the model of the physical system):

��
%  ��
� ��� � � % � �

����� � �� � � �"
 � ��� � � % � �
����� � �� � � ����� � � � ��


�
�

Where
�

is the number of possible values for variable
� � , � � % is the set of candidates in which

� � must
be of a certain value � � % (equivalently, the set of candidates which will be eliminated if

� � is measured
not to be � � % ), and

� � is the set of candidates which will not be eliminated no matter what value is
measured for

� � (equivalently, the set of candidates which do not predict a value for
� � ).

This method relies on the availability of failure probabilities for system components, in order to
calculate the probabilities

� � � � % � and
� ��� � � . However, in many cases this information is unknown.

In addition, this method can be computationally very expensive if there are many points in a device
that could be measured and/or if each variable may take on many possible values. To avoid these
problems, de Kleer proposed a considerably simplified version of this minimum entropy technique
[de Kleer, 1990], assuming that all components fail independently with equal probability (which is
somewhat suspect since dependent failures can be very common in some domains and certain compo-
nents may fail more often than others), and that components fail with a very small probability.

Supported with strong assumptions, the simplified version states that the best measurement is the
one which minimises: �

% � � %"� �"
 � � � % �
where � � % is the number of those remaining fault candidates which have the minimum cardinality �
and which predict that the value of variable

� � is � � % . Here, � being the minimum cardinality means
that all candidates with less than � components have been exonerated from suspicion.

What this method implies is that, to determine the best next measurement, it is only necessary to
consider the fault candidates of minimum cardinality, i.e. those candidates containing the least number
of components. In fact, given the minimum cardinality being � , every candidate with less than � pos-
sibly faulty components has been eliminated and every candidate having more than � components has
a negligible probability in comparison with any candidate of cardinality � . Thus, this one-step looka-
head strategy always first proposes measurements which will differentiate amongst single-component
fault candidates (with � � �

being the smallest cardinality possible). If all single-component can-
didates are eliminated, it proposes measuring points which differentiate amongst double-fault candi-
dates, and so on.

It is important to notice that calculations involved in this method are very simple. More impor-
tantly, no actual probability values are required to perform such calculations. Only the counts of the
number of candidate faulty components that support each hypothesised measurement outcome are
needed. Therefore, this method can be applied even when the exact probability values are unknown,
provided that assumed conditions are satisfied such that faults occur independently and with a very
small, equal probability.

Now, go back to the example of figure 7.1. Given the inputs, 
 � � ) �
��� ) � �	� ) � ��� ) � �

�
, and the measured outputs

� � ���
and � � ���

, there are two single-component fault candidates:�
� �
� and

� 
 �
� . In other words,
�
� �
� and

� 
 �
� are the remaining candidates which have the
minimum cardinality of � � �

. Possible measurement outcomes divide these candidates in the way
as summarised in table 7.1. For instance, as discussed earlier, if the hypothesised measurement results
in

� � �
then � � is faulty (since it would otherwise lead to

� � �
) and 
 � is not (because it is part

of both environments
� 
 � )�� � � and

� 
 � ) 
 � )�� � � , which support the predicted value
� � �

). Note
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that, although it is possible for, say, � to take a predicted value of 4 rather than 6, it could not have
a measured value of 4 given the present consideration of, at least, one of 
 � and � � being faulty.
In fact, the supporting environment of the prediction �

� �
is
� 
 � )�� �
� , an obvious contradiction

(unless both single-component candidates have been eliminated). For similar reasons, the predicted
value �

� �
under the environment

� 
 � ) 
 � )�� �
� is excluded as a hypothesised measurement from
this table.

Hypothesised Measurement Candidates
� � � �

� � �
� � � � 
 �
�
�
� � � 
 �
��) � � � �

�
� � � 
 �
��) � � � �

Table 7.1: Fault candidates divided by possible measured values

Given this table, it is easy to count that at point
�

, the number of single-component candidates
which predict either of

�
’s two possible values is 1, and that at point � or � , the number of single-

component candidates which predict � or � ’s only possible value is 2. This leads to the following:
�

:
��� �"
 � � ��� �"
 � � �

� :
��� �"
 � ����� �

� :
��� �"
 � ����� �

where the base for the logarithm is set to � ; a different base may be used, if preferred, as the logarithm
is a monotonic function and the use of a different base will not alter the order of the results. Thus,
these results show that

�
is the best next measuring point for candidate discrimination. This matches

well with common-sense intuition.

7.4 Extending GDE with Fault Models

GDE uses only one fixed model to predict the normal behaviour of the physical system under diagno-
sis. It determines a component to be faulty if a retraction of its corresponding correctness assumption
makes the predicted behaviour consistent with the observations.

GDE does not make use of knowledge about how components may behave when they fail. As a
result, the fault candidates isolated by GDE are logically consistent with the observations, but may
well be physically implausible or even wrong. A typical example for this involves a simple electrical
circuit consisting of a battery and several bulbs wired in parallel with some being lit and some not.
Intuitive diagnoses in such a situation are those bulbs which are not lit. However, in addition to finding
these faulty bulbs, GDE may generate many other physically impossible, though logically consistent,
fault candidates, unless further measurements are made. For instance, a resulting candidate, consisting
of the battery and lit bulbs, might suggest that the battery is broken and provides no power (therefore,
some bulbs are not lit), and those lit bulbs are faulty since they produce light without power supply.
This is a rather weird explanation, of course.

Fortunately, the GDE system has been extended to exploit fault models (when available) so
as to identify the actual misbehaviour of the faulty components and, thus, to limit the occurrence
of implausible or incorrect diagnoses. A good example of such extensions is the GDE+ system
[Struss and Dressler, 1989], in which each physical component is characterised by the description
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of its normal behaviour plus a set of possible descriptions of fault behaviour and in which each com-
ponent is assumed not to fail outside these fault descriptions.

More concretely, within GDE+, a component, � , is allowed to fail in a certain number of ways,
and each possible way is explicitly described by a fault model of the behaviour of that component.
Each fault model is, in turn, represented by two nodes in the ATMS: � � and � � � , with � � denoting
the

�
-th potential fault behaviour of � and � � � denoting the negation of � � . At any time, there

must be one and only one of � � and � � � which is consistent with the observations, with the other
contradicting the observations. A fault model of a component, for instance the

�
-th model � � of � ,

is said to contradict an observation, if there is a (possibly empty) set of other components such that
� � cannot be consistently joined with any combination of the normal �"	 � fault representations of
those components when presented with that observation. The introduction of fault models in GDE+
supports the following inference rule: If each of the known possible faults of a component contradicts
the observations, then the component is not faulty and should be exonerated from suspicion.

Consider a simple circuit as shown in figure 7.2, where a battery � is connected, in parallel, to
three bulbs � � , �

�
and � � of the same type via pieces of wire � � ) � � � ) � ) � � � ) � . Observations

indicate that only � � is lit whilst � � and �
�

are off. The problem is given such observations to
determine what went wrong in the circuit.
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Figure 7.2: A circuit of a battery and three bulbs

Using GDE’s candidate generation method, for this simple diagnostic problem, a total of 22 mini-
mal candidates are generated, including

�
� � ) �

� � , � ��) � � � , � ��)�� � � , � � ��) � � � , � ��)�� � � , � � � )�� � � ,�
� � )�� � � , � � � )�� � � , � � � )�� � � , � � � ) � � � , ... (Note that these candidates are not necessarily gen-

erated in this order.) Although GDE does return the plausible diagnosis, i.e. the first candidate,�
� � ) �

� � , in the above list, it also generates many physically implausible diagnoses. Here, the first
one is plausible because � � being lit indicates that the battery does supply sufficient voltage, and a
bulb that is off despite this fact is considered to be broken. However, all the other candidates are not
acceptable diagnoses, since they imply either a wire producing voltage out of nothing or a bulb being
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lit without voltage. Only further measurements would enable GDE itself to rule out such implausible
diagnoses.

This problem can be solved by GDE+ without requiring further measurements, however. Let each
type of component have exactly one fault model, informally as listed in table 7.2, where

� � � ) � ) �
and � � � ) � � � ) � . The only fault model for each bulb, and hence the one for � � , directly contradicts

Fault Predicted Value
battery empty voltage( � )

� �
bulb broken light( � � ) � off
wire broken resistance( � � )

���

Table 7.2: Fault models for the battery-bulb example

the observation that shows � � being lit. � � is thus inferred to be not faulty and removed from any
minimal candidates (e.g.

� ��) � � � and
�
� � ) � � � ) which would otherwise contain it. This is because

GDE+ works based on the strict, though retractable, assumption that a component fails in no other
way than those specified in its fault models. Any minimal candidate with part of it being deleted
(e.g.

� � � or
�
� � � ) will no longer be regarded as a candidate, since whatever remain in that set of

inconsistent assumptions are not sufficient to explain all the observed discrepancies (the very reason
that the original candidate was referred to as a minimal candidate).

The elimination of � � being a possible faulty component means that there is current passing
through it given the fact that it is lit. Having current at � � contradicts the only fault behaviour of
each broken wire and the empty battery. Therefore, candidates involving pieces of broken wire and/or
empty battery are also eliminated. In so doing, GDE+ is able to conclude that the only minimal
candidate is

�
� � ) �

� � , as desired.
The price paid for this important capability of GDE+ for candidate elimination is the significant

increase of the complexity of the original GDE system. GDE+ worsens the combinatorial problem
of GDE: There are already � � � � � possible diagnoses for a physical system of 	 components without
fault models in GDE, with

-
possible fault descriptions per component, there may be � � - � � possible

diagnoses for GDE+ to examine. Therefore, there exists a potential risk in utilising GDE+ of creating
a vast number of combinations of normal and fault component models. In general, certain control
strategies are necessary to attain a trade-off between its discrimination power and efficiency.

Another representative of extensions made to GDE is the Sherlock system [de Kleer and Williams, 1989].
Sherlock views the central task of diagnosis as identifying the behavioural description of each sys-
tem component which is consistent with the observations. Whilst allowing every component to have
different behavioural descriptions, normal or faulty, it maintains the basic intuition behind the GDE
system: To determine faulty components without necessarily knowing how they fail. It ensures this
by assigning each component with an unknown mode.

As with GDE+, however, each component now has multiple models and each model predicts a
different behaviour which must be considered. There are far more behaviours to reason about and the
useful concepts of minimal conflicts and minimal candidates in GDE becomes difficult to handle (if
not virtually meaningless). To circumvent this problem, Sherlock resorts to probabilistic information
about the likelihood of each behavioural description, introducing the most probable fault behaviours
to components in order to restrict candidate generation. In particular, to keep the combinatorics in
check, Sherlock performs best-first search to generate the diagnoses in decreasing likelihood and
utilises heuristics to decide when enough diagnoses have been found. In this way, Sherlock avoids
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considering most of the possible candidates that GDE has to deal with and performs significantly
better than GDE.



Chapter 8

Agent Systems

8.1 Agent Oriented Programming

A good survey of recent thoughts on this topic is in [Jennings, 1999].
We’ll look at a proposal by Shoham for a proposal for a style of programming based on agents.

See [Shoham, 1993] for more details.

8.1.1 Agents and Objects

Shoham contrasts his proposal with Object Oriented Programming. Agent Oriented Programming
(AOP) is a specialisation of OOP, where the modules (here called agents) come with a notion of state
given in mentalistic terms (beliefs, decisions etc). The main computational mechanism is message
passing, and Shoham makes use of speech act theory to classify the messages according to their role
(informing, requesting, offering, and so on).

OOP AOP
basic unit object agent
state parameters unconstrained beliefs, commitments, . . .
process of computation msg passing & response msg passing & response
types of message unconstrained inform, request, offer . . .
constraints on methods none honesty, consistency

Figure 8.1: Comparison of OOP and AOP

8.1.2 Components of the system

There are three main components:

� An agent theory: this is a formal language for describing mental states, and how the states
change. This uses several modal operators.

� An agent language: this is an interpreted programming language in which agents can be pro-
grammed. The semantics for this language is required to be faithful to the semantics of the
agent theory.

59
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� An “agentifier” – some way of turning devices into agents.

Shoham says little about the last component. We will concentrate of the first two.

8.1.3 The agent theory

Here we want a theory of mental states that we can use to say how agents should behave.
Shoham organises the theory around three modalities: belief, obligation and capability. (The

notion of decision or choice then corresponds to obligation of an agent towards itself.)
The model here is that the agents decides what to do on the basis of beliefs about the state of the

world, past present or future, about the mental states of other agents, and on the capabilities of the
agents. An agent will not try to do something it believes it is incapable of. The decisions should also
be consistent – the agent should not decide to be in two places at the same time, for example.

Shoham has chosen here not to represent explicitly motivation, though this will be an important
part of a more developed agent theory.

8.1.4 A language for time, belief, obligation and capability

Shoham adopts a standard approach to reasoning about time: a distinguished extra argument to a
predicate is used to denote the point of time where the statement is taken to be true (the extra argument
is here written as a superscript). So � ��
 � 
���� ��� � ��� � �����
means that the kettle is boiling at time

�
.

Actions are treated here like facts, associated with times. This means that actions are modeled as
instantaneous.

Beliefs are represented by a three place modal operator, with arguments
� ) � )�� corresponding to

agent, time, and belief, written �
� � � �

These can be nested – �	�
�
��

� � ��
 � 
 �� ��� � ��� � � �

$

means that at time 3, agent
�

believes that at time 4, agent
�

will believe that the kettle boiled at time
2.

Obligation This modality has four arguments:
� ) � ) � )�� expressing an obligation at time

�
of agent�

toward agent
�

about statement � . The obligation is about a statement, and not about an action, as
we will see. This is written �����

���� � � �

Decision can now be treated just as an obligation of an agent towards itself:

�	�	� �� � � def

�����
���� � �

For example, we can think of the decision to go to a concert this evening as the forming of an obliga-
tion to oneself to be at the concert at the appropriate time, circumstances permitting.
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Capability is not necessarily a mental notion, since it is more directly to do with the structure and
embodiment of a given agent. Here a three place modality is used, with arguments

� ) � )�� saying that
at time

�
agent

�
is capable of � . Thus

������� � � ��
 � 
 �� ��� � ��� � � � �

means that agent
�

is capable at time 5 of getting the kettle to boil at time 8. This capability might no
longer be there at a later time.

A version of capability that is linked to the immediate time of an assertion is also defined. Define
�
� � � � � � for a formula � as returning the outermost time mentioned in � .

Thus �
� � � � � ��
 � 
 ��� ��� � ��� � � � � � � �

. Then we can take

�
� � � � � � def

����� � � � � � � �� �

so, for example,
�
��� � � � ��
 � 
 �� ��� � ��� � ��� � � ����� �� � ��
 � 
���� ��� � ��� � ��� � �

8.1.5 Properties of the language

What should we assume about the language and logic we have seen so far?
We need to know how these various modalities interact, and what we can conclude using them.

Shoham gives a fairly weak theory (that is, the set of statements we can deduce is smaller than in a
stronger theory), but this is still enough to be able to design an interpreter.

Internal consistency: assume that the beliefs and the obligations of any agent are logically consis-
tent, ie

� for any
� ) � ,

�
���

�
� � � � is consistent;

� for any
� ) � ,

�
���

�����
���� � � for some

� � is consistent.

Good faith: is the assumption that agents only commit themselves to things they believe they are
capable of doing, and also they believe they will honour the commitment:

� for any
� ) � ) � )�� ,

��� �
� ��� � � �

�
� � � � �

��� � � � � # � � .
Introspection The assumption is that agents are aware of their own obligations (and lack of obliga-
tions), though agents may be unaware of obligations made towards them.

� for all
� ) � ) � )�� ,

�����
���� � � �

�
� �
��� �

� ��� � � ;

� for all
� ) � ) � )�� , �

�����
���� � � �

�
� � �

�����
���� � � .
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Persistence of mental state The above constraints only rule out certain mental states at one point
in time. There are also constraints on how beliefs etc change through time. We want to rule out
belief sets which fluctuate widely from moment to moment. The assumption is that agents hang on
to their old beliefs, and only abandon them if they learn a contradictory fact. Beliefs will thus persist
by default. Also, new beliefs will not be taken up at random – only if an agent learns a new beliefs
explicitly will it get added to the belief set.

Obligations are likewise taken to persist by default. However, the agent should be able to get
out of an obligation, either by being released from the obligation by the other agent in question, or
from realising that it is in fact not capable of honouring the obligation. (This topic is covered in
[Cohen and Levesque, 1990].) This means that decisions of an agent can be overturned, as the agent
can release itself from the obligation.

Capabilities are assumed to be fixed – what the agent can do at one time, it can do at another,
possibly subject to some conditions holding at the time.

8.2 A generic agent interpreter

We assume that each agent has an agent program controlling the agent’s behaviour. Actions occur
as a side effect of an agent’s commitment to an action at a given time; the actions include sending of
messages. We’ll look later at the agent programming language AGENT0.

Computation consists of each agent iterating the following loop at regular intervals:

1. read current messages, update mental state, including beliefs and commitments, according to
the agent program.

2. execute commitments for the current time, possibly resulting in further change of beliefs (this
is independent of the agent’s program).

It’s assumed that messages can be passed to other agents, addressed by name. The temporal
aspects need to be coordinated, and a background clock is assumed to control the iteration of the
interpretation loop, ensuring that the computation is regular. We need to be able to relate the clock
scale to time as represented by the agents, and in particular, we need a notion of current time to say
when commitments have matured.

A simplifying assumption is that any single iteration through the interpretation loop takes less time
than the clock step – otherwise synchronisation problems become more serious. In a real distributed
implementation, this assumption needs to be relaxed, and the loop will have to take account of other
possibilities, for example, that messages may be received in a different order from that they were sent
in.

8.3 The AGENT0 language

Shoham proposes this language for programming agents, together with an interpreter that is a simpli-
fied version of the generic agent interpreter. (I follow Shoham’s original Lisp-like syntax here, but
clearly other concrete syntaxes are possible.)

8.3.1 Syntax of AGENT0

The language is designed to specify how agents come to adopt commitments. Commitments here are
simply primitive actions – the agent is not expected to commit to complex tasks that might need some
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planning, for example.

Facts have two roles — the content of actions, as well as the conditions for execution. These are
atomic basic statements (no logical or modal connectives will be used. The time argument appears as
t in the following example:

(t (boiling kettle))

Actions are classified in two ways: they may be private or communicative, and they may be condi-
tional or unconditional. The idea is that the private actions correspond to statements that only make
sense to the agent concerned. Communicative actions involve IO, and are in a uniform language
available to all agents.

The syntax for private actions is (DO t p-action) for some private action p-action. For
communicative actions, there are three types of communication:

1. Informing: this is straightforward passing of information, indexed by some time t at which the
informing happens:

(INFORM t a fact)

where the informing of fact fact goes to agent a.

2. Requesting at some time to some agent of some action is written

(REQUEST t a action)

Note that the time here is the time the request is made — the action may contain time informa-
tion about the time the action is requested.

3. Cancelling a request is done similarly:

(UNREQUEST t a action)

4. There is also a non-action notation, to indicate where commitments are to be avoided; this is
written

(REFRAIN action)

and is local to the agent.

Conditional action statements Here actions are made dependent on some property of the mental
state of the agent. The idea is that the agent concerned at the time relevant for the action will check
the condition to see if the action is to be performed or not.

Mental conditions have two forms, (B fact) or ((OBL a) action), corresponding to a
fact being believed, and to there being a commitment towards an agent of some action. A conditional
action can be made by attaching a condition to an action, eg:

(IF (B (t’ (boiling kettle)))
(INFORM t a (t’ (boiling kettle))))
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saying that if, at time t the agent believes that the kettle boiled at time t’, then inform agent a of
this.

Mental conditions can be combined with boolean connectives (AND,OR,NOT).
Pattern matching à la Prolog is used to indicate any possible match. Given that negation is present,

we need to say how this works: a variable (written eg ?x here) is existentially quantified, with a scope
upwards to the first NOT, or the whole formula if it is not inside a negation. Thus

(IF (NOT ((OBL ?x) (REFRAIN sing))) sing)

is an action to sing, provided the agent is not committed to any other agent to refrain from singing.
Universal quantification is also allowed. This goes beyond what appears in traditional Prolog, and

makes sense here because of the restricted syntax in other respects (there are no function symbols).
Universally quantified variables (written ?!x) have scope the whole formula. So

(IF (B (t (employed ?!x acme)))
(INFORM a (t (employed ?!x acme))))

asks for information about all those employed by acme.

Commitment rules

Individual agents make use of an appropriate set of action statements. Most of these actions are
unknown where the agent is programmed, however: the program specifies under what conditions the
agent will enter into new commitments.

Commitments may be conditional, not only on mental conditions, but also on message conditions,
referring to incoming messages. A message pattern has the shape

(From Type Content)

matching on the sender’s name, the type of message (inform, request, . . . ) and Content is a state-
ment. Conditions are then made up of boolean combinations of message patterns.

A commitment rule thus has the shape:

(COMMIT msgcnd mntlcnd (agent action))

where the (agent action) may be repeated (or absent). The rule says that, when the message
and mental conditions are satisfied, there should be a commitment towards an agent for some action.
For example,

(COMMIT (?a REQUEST ?action)
(B (now (myfriend ?a)))
(?a ?action))

is a commitment rule which commits to all requests from agents currently believed to be friends.
An agent is programmed, then, by assigning a sequence of commitment rules to the agent. An

agent will also have some initial beliefs and capabilities.
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8.3.2 The AGENT0 interpreter

This is a specialisation of the generic interpreter. Since the capabilities are fixed, the first step in the
top-level loop consists of updating the beliefs and commitments of the agents.

Each agent has its own belief and commitment database. Beliefs are updated as a result of incom-
ing information, or as a result of running a private action.

For the inclusion of new information, in general the problem of how to integrate new information,
while avoiding inconsistency, is known as belief revision (see [Gärdenfors, 1992]). In AGENT0, as the
syntax is kept simple here (only allowing negation as a logical connective), checking for consistency is
feasible. In addition, the AGENT0 agents are gullible — they will simply believe any new information,
and throw out older information which is contradictory.

The commitment database holds a set of pairs of the form (agent action). The capability
database contains pairs (privateaction mntlcnd) of private actions and mental conditions.
(The condition is here to stop commitment to incompatible actions.)

Commitments are removed in two ways:

� as a result of belief change: an agent is required to believe it can honour any commitment; if
beliefs change, so that the mental condition for an action is no longer met, then a commitment
will be removed.

� as a result of an UNREQUESTmessage.

Commitments are added according to the following algorithm:
for each program commitment statement1

(COMMIT msgcnd mntlcnd (a action)*)

if:

� the message condition holds of incoming messages, and

� the mental condition holds of the current mental state, and

� the agent is capable of all the named actions

� the agent is not committed to refrain from any named action, and

� for any named refrain actions, the agent is not committed to the action,

then commit to all the named agent/action pairs.

Carrying out commitments The second step in the loop is to honour those commitments that have
matured. In this step, the interpreter executes all actions whose time has come; since the time grain for
executing the loop may not coincide with the single step in the time scale, this means commitments
associated with a time between the current time, and one time-grain interval previously.

Different actions are executed as follows:

� INFORM, REQUEST, UNREQUEST: send the appropriate message.

� REFRAIN: No effect here.
1* here has the usual regular expression sense.
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� DO: check belief and commitment databases, check mental condition associated with the action,
and all being well perform the action.

� IF: consult the belief and commitment databases, and test the mental condition, and if all well,
execute the action (recursively).

8.3.3 Examples

Consider the following natural language dialogue in the context of booking an airline flight.

P to C: Please tell me what flights you have from SF
to NY on April 18th

C to P: Flight 354 leaves at 0830, flight 293 at 1000,
flight 441 at noon, ...

P to C: Please book me on 354
C to P: That is sold out
P to C: Please book me on 293
C to P: That is confirmed with reservation number

112358
P to C: Please book me also on 441
C to P: That conflicts with 293; I am not allowed

to double book a passenger
P to C: Please get permission to do so
C to S: I request permission for the following ...
S to C: Permission denied
C to P: Sorry, I cannot get approval

For this example earlier, in an agent implementation, the airline booking agent could have a capa-
bility database with two items as below.

((issue_bp ?pass ?flight ?time) true)

((DO ?time (update_seats ?t1 ?flight_no ?extra_seats))
(B (?time (remain_seats ?t1 ?flight_no ?current_seats))))

– here issue_bp describes the action of issuing the pass at the appropriate time; the second capa-
bility is to run an update on the number of available seats, provided the agent currently believes there
are seats remaining on the flight.

The agent has a couple of commitment rules, one to inform the passenger of any information
requested that is available:

(COMMIT (?pass REQUEST (IF (B ?p) (INFORM ?t ?pass ?p)))
true
?pass

(IF (B ?p) (INFORM ?t ?pass ?p)))

and another to reserve a seat on request, provided there is a seat available, and the customer is not
already booked on another flight:

(COMMIT (?cust REQUEST (issue_bp ?pass ?flight ?time)) % msgcnd
(AND (B (?time (remain_seats ?flight ?n))) % mntlcnd

(?n > 0)
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(NOT ((OBL ?anyone) (issue_bp ?pass ?fl ?time))))
(myself (DO (now + 1) % fst action

(update_seats ?time ?flight -1)))
(?cust (issue_bp ?pass ?flight ?time))) % snd action

Let’s introduce a macro for convenience:

(query_which t asker askee q) =
(REQUEST t askee (IF (B q) (INFORM (t + 1) asker q)))

Notice this will not return negative information, even if that is available. We need

(query_whether t asker askee q) =
(REQUEST t askee (IF (B q) (INFORM (t + 1) asker q)))
(REQUEST t askee (IF (B (NOT q))

(INFORM (t + 1) asker (NOT q))))

to be sure to get that also.
Now the interaction can be modelled by successive messages:

agent action
----------------------------------------------------------------
smith (query_which 1march/1:00 smith airline

(18april/?!time (flight sf ny ?!num)))
airline (INFORM 1march/2:00 smith

(18april/8:30 (flight sf ny #354)))
airline (INFORM 1march/2:00 smith

(18april/10:0 (flight sf ny #293)))
smith (REQUEST 1march/3:00 airline

(issue_bp smith #354 18april/8:30))
smith (query_whether 1march/4:00 smith airline

(OBL smith) (issue_bp smith #354 18april/8:30))
airline (INFORM 1march/5:00 smith

(NOT ((OBL smith) (issue_bp smith #354 18april/8:30))))
smith (REQUEST 1march/6:00 airline

(issue_bp smith #354 18april/10:00))
....

------------------------------------------------------------------

Thus the passenger asks to book on the second flight, given that the request to book on the first has
not been successful.

8.4 Agentification

The third component of Shoham’s proposal is for a process of agentification. One way of building an
agent system is to define the agents as above, and then to use a generic interpreter. This means that
the intentional features of the agents (beliefs, obligations etc) are explicitly represented. However, we
would like also to be able to pull lots of disparate devices into an agent framework, and these other
devices are usually already implemented in some way. Can we incorporate other devices into an agent
framework?

The role of the agentifier is to allow this incorporation. The key is that intentional notations can
be viewed as a way of conceptualising a device, for the designer. Thus, for a design in AGENT0, there
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can be an implementation in some other form. A lower-level description of the implementation can
conversely be related up to a higher level intentional specification. Thus Shoham proposes that we
should have a device to compute, from a description of a device in a low level process language, a
description in AGENT0.

Shoham does not give details on this, simply saying that “I expect the unconstrained problem will
be quite difficult”. An interactive approach might be productive here.

8.5 Agentification

The third component of Shoham’s proposal is for a process of agentification. One way of building an
agent system is to define the agents as above, and then to use a generic interpreter. This means that
the intentional features of the agents (beliefs, obligations etc) are explicitly represented. However, we
would like also to be able to pull lots of disparate devices into an agent framework, and these other
devices are usually already implemented in some way. Can we incorporate other devices into an agent
framework?

The role of the agentifier is to allow this incorporation. The key is that intentional notations can
be viewed as a way of conceptualising a device, for the designer. Thus, for a design in AGENT0, there
can be an implementation in some other form. A lower-level description of the implementation can
conversely be related up to a higher level intentional specification. Thus Shoham proposes that we
should have a device to compute, from a description of a device in a low level process language, a
description in AGENT0.

Shoham does not give details on this, simply saying that “I expect the unconstrained problem will
be quite difficult”. An interactive approach might be productive here.

8.6 Agent Oriented Programming: extensions

Shoham’s proposal has had a couple of implementations, and some extensions to AGENT0 now exist.
As it stands, it gives an idea of how the framework is plausible for fairly simple systems. However,
we can see several ways in which the ideas can be explored further.

� A richer mental life: the agents could be allowed a richer set of mental attitudes. In particular, a
more complex structure of motivations would give more interesting behaviours, and the addition
of a planning phase, in which the agents can plan in order to find the best way to proceed, would
be closer to the standard view of human agents.

� Classes of agents: Another feature often found in proposals for agent systems is that a group of
agents form a class, with many features in common. Some support for this is needed (along the
lines of object-oriented programming).

� Persistence of mental states: it is a hard problem to pin down what exactly this principle of the
interpreter should mean in practice.

� Belief revision: the AGENT0 belief revision strategy when new information is acquired is naive.
There are many rival approaches to this problem.

� Beliefs about beliefs: the simplifications made in AGENT0 rule out beliefs about beliefs in the
belief database. This simplifies the interpretation, but throws away one of the attractive features
of the agent approach, where agents can try to “second guess” each other.
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� Societies of agents: many proposals for agent-like systems suggest that some of the interesting
phenomena will arise on the level of the collective of society of agents. There could be features
associated with this level, such as social rules which allow the agents to get on together.

For other proposals relating to societies of agents, see [Minsky, 1985, Winograd, 1987].

8.7 Minsky’s agents

The notion of agent in [Minsky, 1985] is different from that in AGENT0. Minsky is less concerned
to give a formal characterisation of the way agents are specified and interact, and more concerned to
argue that this is the right way to approach an understanding of mind.

Minsky says ([Minsky, 1985, p 17]):

I’ll call “Society of Mind” this scheme in which each mind is made of many smaller
processes. These we’ll call agents. Each mental agent by itself can only do some sim-
ple thing that needs no mind or no thought at all. Yet when we join these agents into
societies—in certain very special ways—this leads to true intelligence.

This already introduces the idea that the individual agents should be computationally simple; the
interesting behaviour is the result of the interaction.

Minsky suggests that even simple tasks involve several agents ([Minsky, 1985, p 20]).

What kinds of smaller entities cooperate inside your mind to do your work? To start to
see how minds are like societies, try this: pick up a cup of tea!

Your GRASPING agents want to keep hold of the cup.
Your BALANCING agents want to keep the teat from spilling out.
Your THIRST agents want you to drink the tea.
Your MOVING agents want to get the cup to your lips.

These sorts of agents are not engaged in the sort of interaction corresponding to message passing on
the conscious level, as happened in the airline example. Still, there is some sort of interaction going
on, and Minsky uses an intentional vocabulary here (the agents want . . . ).

Minsky want to understand intelligence this way, so he deliberately wants to be sure that none of
the agents is intelligent (otherwise the explanation will be circular). He points out that the capabilities
of an agent can be looked at in two ways: what the agent can do on its own, and what it can do as
a member of a society. Talking of an agent-based program called Builder, he says ([Minsky, 1985, p
23]):

Let’s use two different words, “agent” and “agency”, to say why Builder seems to lead
a double life. As agency, it seems to know its job. As agent, it cannot know anything at
all.

The idea is that, on its own as an isolated agent, builder is a simple process that turns other agents
on and off. But, seen from outside, builder does whatever all its sub-agents accomplish, using one
another’s help.
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8.8 Sloman on human-like agents

In various papers, Aaron Sloman has been working out ideas on more complex agents, trying to get
closer to human capabilities (see [Sloman, 1996]2). There is a toolkit for building agents, and several
projects have been carried out. Sloman is interested in incorporating different sorts of sensing into an
agent architecture; the agent should have rules allowing it to process incoming sensory data, and this
will be an important part of how an agent reacts (so more is involved than simply receiving messages
from other agents).

Sloman distinguishes agents by the sorts of control regimes they employ.

Reactive Subsystems Here the information coming in is processed in a fixed way, resulting in some
output and or action. There may be some fixed conflict resolution strategy, but the processing should
be like a reflex action, and not a considered response to the information at hand.

Deliberative Subsystems A reactive system is relatively inflexible; it is liable to fail when con-
fronted with unexpected situations, and it cannot plan ahead to try out “mentally” various alternative
actions to see which is the best option. An agent with the ability to form new representations, and to
use them to reason hypothetically, is called deliberative.

In this situation, resource allocation becomes more important; in reactive systems, the response
can be expected to involve some fixed amount of computation, regardless of the situation. Reason-
ing about hypothetical situations is potentially time consuming, and likely to involve very different
amounts of computation, depending on the input.

Some learning ability is important here; solutions which are found via deliberation will be useful
later on, and they can be turned into reactive components (this is like the way skills are developed in
humans, where conscious problem solving for a problem class turns in to access to a known set of
solutions).

A meta-management subsystem Sloman envisages a third sort of control system. The deliberative
system itself is likely to suffer from some inflexibility, and more flexibility can be achieved by a mon-
itoring system that considers the behaviour of the deliberative system, its use of resources, whether or
not there is a pattern to the problems tackled, and so on, in order to redirect the efforts of the delib-
erative system. The motivation here is like that for meta-interpreters of reasoning systems in general;
it allows an extra expressiveness, and can let us side-step some of the computational drawbacks of
working with a fixed inferential mechanism.

8.8.1 Conclusion

The notion of agent as used by Minsky, Shoham, and Sloman gives some idea of the range of uses of
the term. Minsky’s is an earlier use, from where later work has kept the broad idea, while filling in
more detail, and being more specific. Shoham takes seriously the idea that we can have a programming
language by taking (a part) of the ideas involved and turning them into primitive operations in the
programming language. Finally, Sloman is concerned to keep closer to Minsky’s claim that complex
human competences can be understood in terms of interacting agents, and he has elaborated some of
the options for control in such systems.

2http://www.cs.bham.ac.uk/ � axs/misc/agent.architecture.html
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8.9 AGENT0 Programming

We look now at some examples of programming in the style of AGENT0. We will compare some
pseudo-code with a Prolog implementation that we can run.

Example

Problem: Design an agent that will agree to any request, if the requesting agent is believed to be a
friend, and the agent is capable of the action; and will also announce “hi there” when requested by
any agent at all. Recall that agents are described by their capabilities, beliefs, and commitments; new
commitments are generated by the agent’s commitment rules.

Let’s give the agent here a “private” action of saying “hi there”.

� Capabilities: To say “hi there”.

� Initial beliefs: That some agents are friends.

� Initial commitments: None.

� Commitment rules:
If message requests some action
and requesting agent is believed to be a friend,
then commit to performing the action.

� If message requests to say hi,
and true
then commit to saying hi.

At the code level, this yields the following.
% agent name

who_am_i(greeter).

% initial beliefs
% need to "assert" for Prolog reasons
% beliefs tagged with list of
% time/truth value pairs

:- assert(b(greeter,myfriend(smith),
[[[0,0,2002,0,0,0],t]])).

% capabilities -- need to
% repeat inform etc for each agent

can(greeter,do(Time,sayhi)).
can(greeter,do(Time,sayhowdy)).
can(greeter,inform(A,B,C)).
can(greeter,request(A,B,C)).
can(greeter,refrain(A,B,C)).

% commitment rules
% always sayhi if asked
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commit(greeter,[A,request,do(Time,sayhi)],
[],
A,
do(Time,sayhi)).

% always do request for requester,
% if requester currently friend

commit(greeter,[A,request,B],
[b([Now,myfriend(A)])],
A,
B):-

what_time_is_it(Now).

% private actions

sayhowdy :- write(’Howdy!’),nl.

sayhi :- write(’Hi there’),nl.

To get anything to happen with such an agent, we need another agent in the vicinity, such as the
following minimal agent.
% agent name

who_am_i(smith).

% no initial beliefs

% standard capabilities
. . .

% commitment rule:
% times of request & action unspecified,
% no message or mental conditions

commit(smith,[],
[],
smith,
request(T,greeter,

do(Time,sayhi))).

An identical agent called jones is also around for testing.

Execution

This gives the following behaviour.
The interpreter can be run for successive “ticks” round the basic loop of processing messages and

executing commitments.
At each tick, after the first:

� the greeter has a message from smith and from jones
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� the commitments rules form 3 new commitments (2 for smith, 1 for jones)

� smith and jones form commitments to request a greeting

� the greeter performs the action 3 times

� smith and jones send new requests to the greeter.

8.9.1 Debugging

Some hints on debugging such systems, as this is a serious problem in distributed systems.

� use clean database/0 to tidy up beliefs, and messages in transit.

� browse the agents’ beliefs with

?- b(agent, X, Y).

Beliefs are tagged with a list of time and truth value pairs; agents have beliefs about the com-
mitments they have formed, so these can be accessed in this way also.

� Instantiation of variables can happen mysteriously. It is more robust to use the current time via
what_time_is_it/1.

8.9.2 A more complex example

Let’s look at agents for the game paper, scissors, stone.
There are two agents playing the game. At each turn, the agents simultaneously play one of the

three options (paper, scissors, stone).
If they make the same play, no-one wins; otherwise paper beats stone, stone beats scissors, and

scissors beats paper.
We can’t ensure simultaneity directly here; let’s use a third referee agent to gather the play infor-

mation and keep track of the scores.

The player agents: outline

� Capability: to pick a move – may be smart, constant, random . . .
This also forms a commitment to the umpire to inform what the move is.

� Commitment rule: if the umpire requests to pick a move, then do so.

Umpire agent: outline

� Initial beliefs: about the start state of the game.

� Initial commitment: to start the game.

� Capabilities: to score the game, by working out the winner and keeping track of the score.
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� Commitment rules: if believe that both agents have played, then:
– score the game
– add beliefs that agents have not made move (for next round)
– request agents to pick new moves

We can now proceed to the implementation level.

Code: player agents

% agent name

who_am_i(player1).

% no initial beliefs

% capabilities -- pick move by player

can(player1,do(_Time,pick_move(player1))).

% commitment rules

commit(player1,[umpire,
request,
do(T,pick_move(player1))],

[],
umpire,
do(T,pick_move(player1))).

% private actions % -- really need a hiding mechanism

pick_move(Player) :- ....,
add_commitment(Player,

umpire,
inform(Now,umpire,

[Now,my_move(Player,Move)])).

Code – umpire agent

% agent name

who_am_i(umpire).

% initial beliefs

:- assert(b(umpire,score(0,0,0),
[[[1,1,2002,0,0,0],t]])).

:- assert(b(umpire,round(1),
[[[1,1,2002,0,0,0],t]])).

% initial commitments -- % again, need to use assert
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:- assert(cmt(umpire,umpire,
request([1,1,2002,0,0,0],

player1,
do([1,1,2002,0,0,0],

pick_move(player1))))).

% and same for player 2
% capabilities

can(umpire,do(_Time,score_game(_,_))).

% commitment rules-- have to repeat
% conditions for each rule; the implementation
% should allow a list of actions.

commit(umpire,[],
[b([Now, my_move(player1,M1)]),
b([Now, my_move(player2,M2)])
],
umpire,
do(Now,score_game(M1,M2))) :-

what_time_is_it(Now).

% for same mental conditions

...
umpire,
inform(Now, umpire,
[Now, not(my_move(player1,M1))]).

% Notice the umpire can inform itself --
% need a possible action here.
% initiate next round --
% again same mental conditions

commit(umpire,
[],
[b([Now, my_move(player1,_M1)]),
b([Now, my_move(player2,_M2)])

],
umpire,
request(Now,

player1,
do(Now,pick_move(player1)))) :-

what_time_is_it(Now).

% similarly for player2 % private actions
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score_game(M1,M2) :- ...
who_wins(M1,M2,Xplus,Yplus),
new_score(OldX,OldY,Xplus,

Yplus,NewX,NewY),
add_belief(umpire,

[Now,score(N,NewX,NewY)]),
...

8.9.3 Execution

We can run this for some number of ticks (or for some time, e.g. 30 seconds, using

?- simulate(for,[0,0,0,0,0,30]).

All that is immediately visible is trace of messages being received. But a lot of beliefs about the state
of the system are generated.

| ?- b(X,Y,Z).
X = player2,
Y = cmt(player2,umpire,do([1,1,2000,0,0,0],

pick_move(player2))),
Z = [[[2,26,2002,13,41,35],t]] ? ;

X = umpire,
Y = cmt(umpire,umpire,do([2,26,2002,13,41,35],

score_game(stone,paper))),
Z = [[[2,26,2002,13,41,35],t]] ? ;

X = umpire,
Y = cmt(umpire,umpire,

inform([2,26,2002,13,41,35],umpire,
[[2,26,2002,13,41,35],
not(my_move(player1,stone))])),

Z = [[[2,26,2002,13,41,35],t]] ? ;

Getting back information

We want a judiciously chosen selection of information to get an idea of the behaviour of the system.
In this case, we can take successive scores of the game:

| ?- b(umpire,score(X,Y,Z),W).

W = [[[1,1,2000,0,0,0],t]],
X = 0,
Y = 0,
Z = 0 ? ;

W = [[[2,26,2002,13,41,35],t]],
X = 1,
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Y = 0,
Z = 1 ? ;

W = [[[2,26,2002,13,41,36],t]],
X = 2,
Y = 1,
Z = 1 ? ;

8.9.4 Some comments
� Not Forgetting: we expect that this aspect will lead to space efficiency problems for larger

systems. But some memorising of past beliefs can help to avoid repeating previous mistakes.

� This implementation is not distributed — but this can be achieved relatively easily; see e.g.
Sicstus Prolog implementation of Prolog-Linda.

� It is very easy to “cheat” with this implementation, eg by adding beliefs directly to another
agent! Of course, this would be an underhand move . . .

8.9.5 Other approaches

There is a lot of work going on in this area, with many active research groups. Some examples you
may look at are:

� The Foundation for Intelligent Physical Agents – producing standards for the interoperation of
heterogeneous software agents.

http://www.fipa.org/

� AgentLink – European Research Consortium

http://www.agentlink.org/

� Multi-Agent Systems, lots of agent resources:

http://www.multiagent.com/



Chapter 9

Methodologies for Intelligent Systems
Development

9.1 Introduction

Much of the development of knowledge-based systems has now moved out of the research stage.
There exist many advanced techniques and tools available which are capable of tackling real-world
problems. There is, therefore, a real need for a standard systems development methodology, in order
to meet the increasing demand for delivering high performance systems in a cost-effective and timely
manner. Ideally, such a methodology should explicitly map a prescribed application problem onto the
most appropriate solution technique or a combination of suitable techniques, selected from a large and
still expanding set of possibly applicable methods. A more realistic methodology, however, tends to
provide guidelines about the procedures that are learned from developing past systems and hence, are
known to be useful in building new systems potentially effective for a particular type of task. This
helps alert the system developers to factors which they may not have considered, thereby preventing
the exploration of blind alleys or, if nothing else, avoiding ‘re-inventing the wheel’.

There are now various working methodologies for developing knowledge-based systems. A com-
mon, and not surprising, feature of these methodologies is that the use of them is closely related to
the characteristics of the knowledge available in the application domain, especially to the knowledge
source and orientation. A well-known methodology is KADS (knowledge acquisition and domain
structuring) [A. Schreiber and Breuker, 1993, Hickman et al., 1989, Schreiber et al., 1999], which is
primarily applied to the early stages of domain problem analysis. This is briefly introduced next.
Whilst the creation of a generic KBS development methodology remains as active research, a general
consensus over the suitability of various problem-solving approaches has emerged with regard to what
sort of knowledge is available. A brief discussion about this will be given in section 9.3.

9.2 The KADS Methodology

The KADS methodology is, perhaps, one of the most widely adopted methodological approaches
to the development of conventional knowledge-based systems. It attempts to provide a guidance on
obtaining (mainly empirical) knowledge, analysing it and transforming it into a detailed design for
implementing a required system. The clear focus of the KADS methodology is, however, on the
analysis phase. In line with this, the discussions below will concentrate on its approach to problem
analysis unless otherwise stated.

78
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9.2.1 Basic principles

KADS assumes that the following basic principles are to be followed when considering a KBS appli-
cation [Breuker and Wielinga, 1987]:

� The knowledge and expertise should be analysed before the design and implementation starts.

� The analysis should be ‘model-driven’ as early as possible, where a model is, informally, a con-
ceptual description of domain expertise; that is, a framework of how the knowledge is structured
should be applied early on in the analysis process and used to interpret subsequent information
data.

� The content of the model should be expressed at the epistemological level; i.e. an appropriate
intermediate knowledge representation mechanism should be used, rather than going straight to
encode the knowledge with a particular formalism before knowing how it may be best imple-
mented.

� The analysis should cover the functionality of the prospective system, including an understand-
ing of who will use the system and under what conditions.

� The analysis should proceed in an incremental way; new data should be elicited only when
previously collected data have been analysed and their interpretations documented.

Whilst many of these principles reflect common-sense intuitions, KADS clearly recognises the sig-
nificance of the use of abstract or idealised knowledge models to inform and direct the construction
of a system for the problem at hand. It works by identifying the following four layers of knowledge
abstraction (which reflect different knowledge orientations):

� the domain layer that contains the object-level knowledge, which describes the concepts, ele-
ments and their relations to each other that are specific to the application domain

� the inference layer that gives a kind of meta-level knowledge, which indicates how the object-
level knowledge is to be organised and used in the primitive reasoning processes and hence, is
declarative in nature

� the task layer that presents another kind of (higher) meta-level knowledge, which shows how
goals and sub-goals may be reached, i.e. how tasks and sub-tasks should be performed in
solving given problems and hence, is procedural in nature

� the strategy layer that involves a further kind of (even higher) meta-level knowledge, which
provides the way of monitoring and controlling the overall execution of the problem-solving
tasks

Central to this arrangement is a library of so-called interpretation models (or task templates
[Schreiber et al., 1999]), which are generic and reusable structural descriptions of the types of task
that prospective application systems may perform.

9.2.2 Interpretation models

Within the interpretation models, primitive inference functions and the elements of knowledge that
the reasoning functions will operate on are explicitly described. Given some (domain) knowledge,
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Figure 9.1: The KADS taxonomy of tasks

KADS recommends selection of an interpretation model. These interpretation models are intended to
support the creation of the inference layer by providing guidance about the possible inferences, and
the ordering of these inferences, that are to be involved in the application system. In organising the
library of interpretation models, KADS employs a taxonomy of tasks as shown in figure 9.1.

A typical example of the interpretation models is presented in figure 9.2, which describes the ide-
alisation of assessment tasks. Within this diagram, the unboxed words indicate the inference functions
required to perform sub-tasks and the boxes represent the knowledge elements used as inputs and/or
outputs to these functions. With the incremental acquisition of knowledge, interpretation models can,
of course, be refined and, if necessary, combined with others to yield new ones in order to suit the
given problem.

Consider a specific application example. Suppose that the task is to develop a system for assessing
the suitability of banks, or building societies, for a potential investment. This task can then be matched
with the interpretation model for assessment tasks given above, as follows:

� the case description matches the bank’s policy statements;

� the abstract case description reflects the main interests and penalties that the bank imposes,
summarised from the policy statements;

� the ideal case is a stereotypical description of “ideal” bank policies, which could be real or
imagined;
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� the norm is specified to be the desirable returns, with a minimised possibility of getting penal-
ties; and

� the main interests and penalties are then compared against the desirable returns, resulting in a
suitability report on the bank

The resulting instantiated interpretation model for assessment is shown in figure 9.3.

9.2.3 Application of pragmatic KADS for problem analysis

Before proceeding to further discussions, it is worth noting that applying the full version of the KADS
methodology to problem analysis usually consumes a significant amount of time and effort, due to its
inherent generality. Indeed, this may make the methodological approach too expensive. In particular,
requirements like documenting progress made and decisions taken may not be immediately relevant to
the needs of developing small or medium-sized applications, which are the most demanded in today’s
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market (although these requirements may well be necessary for a large-scale application). For this
reason, the rest of this section only addresses a simplified version of KADS, the “pragmatic KADS”.
For simplicity, this simplified version is named the same hereafter as the full KADS methodology.
(Note that an updated, complete treatment of KADS can be found in [Schreiber et al., 1999] or at:
http://www.commonkads.uva.nl/)

To illustrate how KADS offers guidance in practice, consider the development of a system for
selecting undergraduate degree courses (which has been implemented for the Department of Business
Studies at the University of Edinburgh). This example was first reported in [Kingston, 1992], which
did not involve the strategic level analysis due to the nature of the relatively simple application task.
Since the object-level knowledge was readily available in the domain, the analysis process proceeded
in a bottom-up manner, i.e. starting from the domain layer, via the inference layer, and up to the task
layer. Note that it could be equally plausible to follow a top-down analysis sequence. Indeed, for
many other applications of the KADS methodology, the top-down approach is often preferred.

Most of the object-level domain knowledge was found in the University Calendar, which laid
out the broad syllabus for each course and the other courses that were prerequisites for taking it.
Other department-specific information was elicited through a few telephone interviews, uncovering
additional knowledge about optional courses, which fitted well with certain degrees, and extra infor-
mation about typical course combinations. From this, the creation of the domain layer was then fairly
straightforward.

The construction of the inference layer involved three stages:

� Determining the type of the application task

� Identifying the generic interpretation model for that task type

� Adapting the generic interpretation model to the application domain

Since the essential task of the application system was under some constraints to construct or configure
an acceptable course schedule from the collection of available courses, the task type was determined
to be that of configuration. Based on this, the configuration model as shown in figure 9.4 was then
selected from the library of interpretation models. This model was used as a guiding template from
which to generate a suitable interpretation model for course selection.

It is clear from figure 9.4 that the model generation process includes: a) producing a list of com-
ponents to be added to the configuration model selected; b) adding components one by one to the
partially generated configuration model; c) verifying whether the new component fits into the config-
uration and, if so, whether the configuration is complete; and d) reviewing the resulting configuration
and producing the final outcome. Through this generation process, the adapted application interpreta-
tion model, or the inference structure for course selection was obtained as shown in figure 9.5.

This adapted structure appears to be rather different from the original generic interpretation model.
Nevertheless, it possesses the underlying principles embedded in the original. This can be observed
from a number of viewpoints:

1. The course schedule box in figure 9.5 corresponds to the partial configuration box in figure 9.4.

2. Certain courses are required of all students and, hence, should be added to the course schedule
first, one at a time. This is reflected by the update-1 inference function in figure 9.5, which
corresponds to the instantiate-1 function in figure 9.4.

3. Students are allowed to choose further courses to add to their schedule. This is represented by
the select-1 function in figure 9.5, which corresponds to the select-1 function in figure 9.4.
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Figure 9.4: Interpretation model for configuration tasks

4. Students are allowed to continue selecting courses until their schedule is full. The check for a
complete schedule is performed by the compute-1 and compare-1 functions in figure 9.5, which
jointly correspond to the verify function in figure 9.4.

Thus, the original generic configuration template was adapted to a detailed inference structure suitable
for the given application task. If necessary, this generation process can be performed further on.
For instance, the update-2 inference function in figure 9.5 involves itself complex inferences and,
therefore, could be further decomposed into that as given in figure 9.6.

Having obtained the declarative interpretation model at the inference layer, the next step is to
identify the order in which the inferences required by this model should be executed. For the course
selection task, this was done by devising an algorithm with procedures covering all the components of
the inference structure. The resulting task layer algorithm is given in pseudocode as shown in figure
9.7. This concludes the KADS analysis phase for the present application. The next phase is to design
the application system.

9.2.4 The Design Phase

In the full version of KADS this phase can be thought of as a three stage process, comprising func-
tional, behavioural and physical designs, as briefly summarised below:

� Functional design is to decompose the inference structure, which was produced in the prob-
lem analysis phase, into groups of problem solving functions, storage functions and cooperation
functions (in software terms). Additionally, it provides an indication of the data flow and control
hierarchy in the application system. To preserve the structure of the inference layer KADS of-
fers guidance about the decomposition, such that inference functions are normally mapped onto
problem solving functions and knowledge elements onto storage functions, whilst cooperation
functions permit communications between these two major types of function.



Knowledge Engineering 84

regulations
on allowed
optional courses

initial
specification

regulations
on required
courses

required
courses

regulations on
allowed course
combinations

number of
courses required
to take

difference

number of
courses chosen
so far

chosen
optional
course

currently
eligible
courses

details of
course
timetable

course
timetable

current list
of courses
to be taken

course
schedule

departmental
regulations

�

�

����������� � �

� � � � ���

�

��� �
�

�

�

�

�

��
��

� �
�

�

� �
���

�

�

�

�

���� �
�

�

�

��
� ��� �

identify-1 identify-3

compare-1update-1

update-2

select-1

identify-2

compute-1

construct

Figure 9.5: Inference structure for the course selection task



Knowledge Engineering 85

(former list)
eligible courses

one eligible
course

regulations on
allowed course
combinations

current list
of courses
to be taken

timetable of
chosen course

courses
still available

timetable of
eligible course

level of
eligible course

eligible courses
(updated list)

courses no
longer available

chosen
course

�

�

�

�

��

�

�

��

�

� � ���

�

�

�

�

� �

select-2

compare-2

compare-3

compute-2 compute-3

remove
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� task: � �$	 � � 
	� ��� � ��� � � � � � � � � � � �
� goal: Assist a student to choose a set of courses complying with University regulations.

� control terms:

– ��� � � � ��� � � ��� � � � � : Courses that student must take.

– � � � 
 � � � � � ��� � � � � : Courses that student is permitted to take.

� task structure:

� ��	 � � 
	� ��� � ��� � � � � � � � � � � � �	�� � � � ��� � � ��� � � � ��� � � � 
 � � � � � ��� � � � ���� � ��� � � � � � � � � � � �
� � � � � 	 � � 	 � � � � � � 	 ����� � � � � ��	��� � ��	 � � � �� ��� � � � ��� � � ��� � � � � �� � ��	 � � � �� � � � 
 � � � � � ��� � � � � �� � ��	 � � � �� 	�� � � ��� � ��� � � � � � � � � � � - � 	��
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� � � � � � ��� � � ������	 � � ��� � � � � � � � � � � �$� � � ��� � � � � � � � � � � � �
�
� � ��� � � � ��� � � ��� � � �

� 	 �

While 	�� � � ��� � ��� � � � � � 	 � � ������	 � � ��� � � � � � � � � � � � � 	�� � � ��� � ��� � � � � � � � � � � - ��	 do:
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 � � � � � ��� � � � � � � � � � � ��	�� � � ��� � � �
� � � � � � ��� � � ������	 � � ��� � � � � � � � � � � �$� � � ��� � � � � � � � � � � � �
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Figure 9.7: Task layer algorithm for course selection
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� Behavioural design is to choose a particular kind of algorithm to implement a given functional
component. KADS gives hints to focus the attention onto certain (and sometimes rather general)
AI techniques, such as data-driven reasoning or best-first search.

� Physical design is to identify the data structures appropriate for implementing the algorithms
chosen in the behavioural design stage.

9.3 More on the Methodologies

The eventual selection of which techniques/tools to implement an application system with largely de-
pends upon what knowledge is available about the problem at hand. Although it can be difficult to
devise a generic methodology for making such a selection, lessons may be learned from the existing
widespread applications of AI reasoning paradigms (which include rule-based reasoning, case-based
reasoning, constraint-based reasoning, and model-based reasoning). The last decade has seen consid-
erable work on comparing and evaluating reasoning alternatives for different problem domains, and
on identifying and exploiting their commonalities.

As an example, it is generally established that case-based reasoning (CBR) systems provide a
number of important advantages over conventional rule-based systems, even though both approaches
use empirical knowledge:

� CBR reduces the difficulty in the process of knowledge acquisition, the bottleneck in any ap-
plication of knowledge-based systems. This is because the empirical knowledge used in a rule-
based system is represented as a collection of association rules derived from past experience,
whilst the experience is gained directly from solving problems presented in past cases. Knowl-
edge required to construct a CBR system is, therefore, usually less difficult to acquire than that
used in a rule-based system. It is easier to articulate, examine and evaluate case histories than
rules. Most often, rules are formalised expertise provided by experts who are, in the first place,
those people who have vast specialised experience, learned from witnessing a large variety of
cases in the problem domain.

� A CBR system can remember its own past performance. If it has been successfully used to, say,
diagnose a patient with certain symptoms (that is, such a case has been stored in its case mem-
ory), when facing another patient with similar symptoms the system would efficiently devise
a similar treatment by retrieving, and perhaps modifying, the treatment given to the previous
patient. In contrast, rule-based systems do not generally employ a memory. For the first patient
it might have to fire many rules to come up with a diagnosis and treatment. When presented to
another patient having the same symptoms, it has to redo the same rule-firings from scratch.

� CBR is more robust than rule-based reasoning in general. CBR systems are designed to operate
in conditions where the current problem only partially matches those recorded previously. Such
a system can adapt its solutions to novel problems by reasoning through analogy. Using the
medical diagnosis example again, if a CBR system is presented with a patient whose symptoms
appear to be different from any cases that it has successfully diagnosed, the system does not need
to give up. Rather, it might try to retrieve various previous cases that were similar in one way
or another and devise a treatment accordingly. Rule-based systems could not do this, however.
Presenting a problem to a rule-based diagnostic system which does not match (or partially
match) all the conditions of any one rule in the rule base, no solutions would be generated.
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No reasoning paradigm is universally acceptable, of course. A CBR system works by relying
upon the availability of an initial set of cases reflecting the typical relationships between problems
and solutions. As with any knowledge-based systems, case-based systems have to encounter situations
where only uncertain knowledge is present. As a result, solutions generated by a case-based system
would not always be optimal or even correct. Also, questions such as how to best index cases and how
to effectively and efficiently adapt cases are unresolved (see the Knowledge Representation notes for
this).

Instead of making an exclusive choice of one reasoning approach, current research encourages
integration of different solution techniques to maximise the use of various sorts of knowledge avail-
able. In addition to the core methodological issue of identifying categories, structures, or properties of
knowledge or tasks for which different reasoning techniques are appropriate or advantageous, typical
topics involved in such integration tasks include:

� Using one form of reasoning to support or guide another

� Compiling one form of reasoning experience into another form of reasoning knowledge

� Transferring successful reasoning methods from one form to another

� Switching among alternative forms of reasoning

� Investigating the interoperability of applications based on different reasoning technology

A significant amount of work exists that demonstrates practical advantages of an integrated ap-
proach for coping with real problems. For example, CBR has been combined with model-based
reasoning (MBR) in [Feret and Glasgow, 1997]. This work uses the explicit structural model of the
physical system under diagnosis and the fault candidates postulated by the component MBR process
to index and match cases. Retrieved cases are then used to overcome errors introduced by the appli-
cation of incomplete and/or incorrect system models. The integrated program allows more accurate
fault isolation, without overwhelming the user with too many fault candidates as compared to using
MBR alone. Incidentally, in MBR systems, including the combined ones like this, constraint-based
reasoning (CSR) is often utilised to increase the effectiveness and efficiency of inference, also. This
combination of MBR and CSR is natural because they both tend to exploit theoretical knowledge
more than empirical knowledge.

Finally, it is worth indicating that apart from the choice of solution techniques, there are other
important design decisions to make. These include selecting a language for knowledge representation,
selecting software for system implementation, and refining the resulting system with respect to given
objectives. Clearly, the outcomes of the latter two design stages have a lot to do with the outcome of
the former, as the success of identifying a right knowledge representation language allows the most
appropriate reflection of the knowledge at hand.

In practice, however, it is difficult to escape pragmatic considerations when choosing such lan-
guages. In particular, the system developers typically have to consider issues like the organisation’s
resources and capabilities. This is because the organisation may already have a software tool and
perhaps, more importantly, knowledge of using the tool. Available resources, both technically (e.g.
the computer network in which the knowledge-based systems will operate) and financially, will play
a significant role in deciding what language to employ. Nevertheless, choosing a language solely
based on satisfying the resource constraints is not advisable. It can be more wasteful if such a cho-
sen language is established to be wrong after system deployment [Durkin, 1994]. It is these kinds of
potentially conflicting requirements that make it necessary to follow carefully a system development
methodology whenever possible.
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