School of Informatics, University of Edinburgh

Object Recognition General

Overview

Several approaches to classification/recognition. Choose

the same class as objects with:
e Properties - similar properties
e Appearance - similar pixel values

e Geometric - similar structures in similar places with

similar parameters
e Graph - similar part relationships

e Bag of Words - enough similar descriptions
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Object recognition key points

Classification by comparing the relative probability

of a shape belonging to different classes.
Use Bayes rule to calculate the class probabilities.
Class model is multivariate Gaussian distribution.

Estimate the distribution parameters from the data.
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The story so far...

Preprocessing:
Capture image
Threshold to isolate object
Locate binary region

Measure properties

T = (compactness, ciy, Cig, Cig, Cly, Cis, Clig)’
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Probabilistic Object Recognition

p(c|d) is the probability that ¢ was the class given that

we observed evidence d

We select most probable class ¢ (i.e. p(c|d) is the
highest) or perhaps none if the probability for all classes

1s too low.
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Computing prob(c|d)? Bayes
Classifier

p(c) is the a priori (before any observations) probability
of observing class c

p(d|c) is the probability that evidence d would have been
observed if ¢ was the class

Bayes rule:

pldlop(c)  pldiep(e)
p(d)  yp(dk)p(k)

p(cld) =

Advantage: we learn p(c) and p(d|c) from examples
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prob(d|c)? Gaussian Distribution

Data d is feature vector & = (f1, fo,..., fn)

Expect some variation in property values, perhaps not
independent between variables.

Commonly joint probability distribution of d is
Multivariate Normal/Gaussian Distribution

For 2 properties, £ = (fi1, f2)" we have:
0.2
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2D Gaussian Distribution
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Characterised by mean (mi, ms)" and covariance matrix

(01)2 Pij0102

| pijo102 (02)°

o; - standard deviation of it property

pi; - cross correlation coefficient between ¢ and j
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Multivariate Normal /Gaussian

Distribution

For each class ¢ need:

e Mean vector m, of dimension n - the average value of

the n properties for class c

e Covariance matrix A. - the n X n matrix of joint
variation between each pair of components of the

vector.

Then, the probability of observing feature vector T is:
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Estimating the Distribution

Parameters - the Class Model

Given k£ > n known instances of class ¢ with properties

{Z:}.

1

Estimated Mean vector: m. = 1 >, T;

Estimated Covariance matrix:

Estimate p(c) from the distribution of known samples
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Probability Example

n = 2 classes. a priori probabilities p(1) = 0.6, p(2) = 0.4

. 2 1|

CIS 1: mq = Al — Al —
L 3

1
5

Cls 2: 7y = Ay = Ayt =

1
5

det(A;) = det(As) =5

~ area
Data £ =

perimeter 10
Which is the most probable class?
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Example continued

Class 1 if p(1|Z) > p(2|T)

Bayes rule:
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—1

11
56—?—5 — 478 x 1073
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Similarly,

11
p(E2) = \/56%(3) — 715 x 1073

S0, class 1 it
0.6 X p(Z|1) > 0.4 x p(Z|2)

287 x 1077 > 2.85 x 107

Thus most likely (barely) to be class 1.
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Midlecture Problem

The data has a probability of 0.1
for class 1 and a probability of 0.2
for class 2. But, class 1 is 3 times
as likely to be observed a prior: as
class 2.

Based on the two pieces of
information, which is the most
likely class to explain the
observations?
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Matlab code for probability

calculation

function prob = multivariate(Vec,Mean,...
Invcor,apriori)

diff = Vec—-Mean;

n = length(Vec);

wgt = sqrt(det(Invcor));

dist = diff*Invcorxdiff’;

prob = apriori * ( 1 / (2%pi)~(n/2))

* wgt * exp(-0.5%dist);
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Training

Calculating classifier parameters p(c), m., A.
Should split data into:

e Training set - used to estimate parameters (eg. 50%
of data)

e Validation set - used to tell when to stop training
(eg. 25% of data)

e Test set - used to test performance (eg. 25% of data)

Must have more samples than properties!
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Training Example

For the batch-mode training used here,
can merge Training and Validation sets.

In the example below, since we have only

4 samples of each class, we’ll be naughty
and use all 4 samples for both the
Training and Test sets.

Can use at most 3 properties.
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Test Objects

|

A: B y B: i~m C:

4 instances of each

a priory probability = 0.33
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Training Code

Dim = 3; %» number of feature properties
modelfilename =
input (’Model file name (filename)\n?’,’s’);
maxclasses = input(’Number of classes (int)\n?’);
trainfilestem = input(’Training image file stem
(filestem)\n?’,’s’);
N = input(’Number of training images (int)\n?’);
for imagenum = 1 : N
currentimagergb = imread([trainfilestem,
int2str(imagenum),’.jpg’l,’jpg’);

currentimage = rgb2gray(currentimagergb) ;
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vec(imagenum, :) =

extractprops (currentimage,0,0,0,0,0);
trueclasses(imagenum) = input([’Train image °’,
int2str(imagenum),’ true class (1..7,
int2str (maxclasses),’)\n?’]);
end
[Means, Invcors,Aprioris] = buildmodel(Dim,vec,N,
maxclasses,trueclasses);
eval([’save ’,modelfilename,’ maxclasses

Means Invcors Aprioris’])
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Building statistical model

function [Means,Invcors,Aprioris] = ...
buildmodel (Dim,Vecs,N,Numclass,Classes)
for 1 = 1 : Numclass
samples = find(Classes == i); % locate cls i
M = length(samples); % num in class
classvecs = Vecs(samples,:); % get members
mn = mean(classvecs);
Means(i,:) = mn;
diffs = classvecs - ones(M,1)*mn;
Invcors(i,:,:) = inv(diffs’*diffs/(M-1));
Aprioris(i) = M/N;

end
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Training Log

doall(2)

Model file name (filename)
?blocks

Number of classes (int)

73

Training image file stem (filestem)
?TESTDATA1/f

Number of training images (int)
712

Train image 1 true class (1..3)
71
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Test Code

eval([’load ’,modelfilename,...
’ maxclasses Means Invcors Aprioris’])
imagestem = input(’Test image file stem
(filestem)\n?’,’s’);
run=1;
imagenum=0;
while " (run == 0)
imagenum = imagenum + 1;
currentimagergb = imread([imagestem,
int2str(imagenum),’.jpg’l,’ jpg’);

currentimage = rgb2gray(currentimagergb) ;

vec = extractprops(currentimage,0,0,0,0,0);
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class=classify(vec,maxclasses,Means, Invcors,...

Dim,Aprioris)

run = input([’Want to process another image ’,
int2str(imagenum+1),’ (0,1)\n?’]);

end
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Recognition Performance

Confusion matrix:

Computed Class
A B C
4 0 0
0 3 1
0 0 4

True Class
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Discussion

e Simple process but well founded

e Works well because reliable feature

extraction and features easily

discriminate

e Choosing good features usually hardest

part.
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What We Have Learned

1. Bayes classifier

2. Multi-variate Gaussian distributions

3. Property-based recognition
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Projective Geometry 1

Projection: Any non-singular (ie. invertable)
linear transtormation P that maps points from

one position to another

Plane T, Plane T,

Plane 9 shapes observed in a 3D position
project onto image plane m; (2D — 2D)
P:m —m
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Projective (Geometry 11

3D—3D, 1D—1D also possible
Accounts for rotation, translation, scale, shear.
To do properly, use homogeneous coordinates

Augment point positions (z,y) to (z,y, 1)

A
Y

\ 1)
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Projective Transfer

Can use projective transfer to map observed

projective image to another view

A
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Virtual "similarity" camera center

IVR Vision: Recognition lecture 6 slide 30



School of Informatics, University of Edinburgh

Use homogeneous coordinates
P,: my — m; (ie. copy scene plane into image
plane)

Py: my — w3 (ie. copy scene plane into new

plane)
Theretore P3 = P, (Pl)_13 T 7 T3
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Projection matrix P;:

P11
P21
P31
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Remapping Algorithm

Input image I(x,y)
Remapped image R(u,v)

If projective relation P between planes known,

then can map (u,v) onto (x,y) using:

[ Az ) [ )

AY v
\ A ) \ 1)
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for each (u,v)
get (x,y) from projection divided by A

R(u, v)

See remap.m

I(z,y)
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Estimating P:(u,v) — (z,y)

Direct Linear Transform Method
N > 4 matched points: {((z;,v:), (i, v;)) }y,

Let p' = (p11, P12, P13, P21, P22, P23, P31, P32, P33)’
Let AZ —

0O 0 0 —u —v; —1 wyu;, vyv;, Y

u; U; 1 0 0 0 —X;U; —X;U; —X;
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Estimating P cont.

Construct A =

Compute SVD(A) = UDV’

p is last column of V (eigenvector of smallest
eigenvalue of A)

Repack p back into matrix P

See esthomog.m
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Projective Transfer Example

%

*" .‘"' =

(1,250) (180,250)

ORIGINAL CARGET REMAPPED
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