

IVR vision: Flat Part Recognition - Part Isolation

lecture 5 slide 1

School of Informatics, University of Edinburgh

```
% find deepest valley between peaks
xminl = max(tmp1)+1;
for i = pkl+1 : peak-1
    if tmp1(i-1) > tmp1(i) & tmp1(i) <= tmp1(i+1) ...
    & tmp1(i)<xminl
        xminl = tmp1(i);
        thresh = i;</pre>
```

Peak Pick Code

Omit special cases for ends of array and closing 'end's.

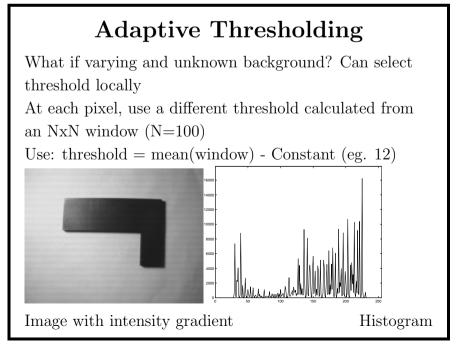
peak = find(tmp1 == max(tmp1)); % find largest peak

```
% find highest peak to left
xmaxl = -1;
for i = 2 : peak-1
    if tmp1(i-1) < tmp1(i) & tmp1(i) >= tmp1(i+1) ...
    & tmp1(i)>xmaxl
        xmaxl = tmp1(i);
        pkl = i;
```

IVR vision: Flat Part Recognition - Part Isolation

lecture 5 slide 2

School of Informatics, University of Edinburgh



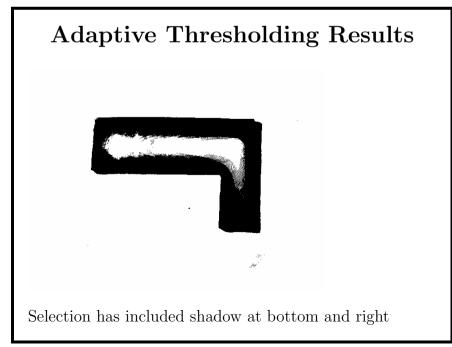
School of Informatics, University of Edinburgh

Adaptive Thresholding Code			
N = 100;			
<pre>[H,W] = size(inimage);</pre>			
<pre>outimage = zeros(H,W);</pre>			
N2 = floor(N/2);			
for $i = 1 + N2 : H - N2$			
for $j = 1+N2 : W-N2$			
% extract subimage			
<pre>subimage = inimage(i-N2:i+N2,j-N2:j+N2);</pre>			
<pre>threshold = mean(mean(subimage)) - 12;</pre>			
if inimage(i,j) < threshold			
<pre>outimage(i,j) = 1;</pre>			
else			
<pre>outimage(i,j) = 0;</pre>			

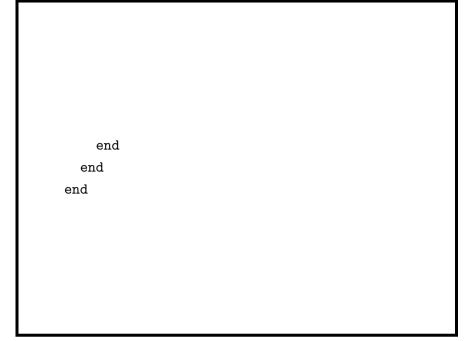
IVR vision: Flat Part Recognition - Part Isolation

lecture 5 slide 5

School of Informatics, University of Edinburgh



School of Informatics, University of Edinburgh



IVR vision: Flat Part Recognition - Part Isolation

lecture 5 slide 6

School of Informatics, University of Edinburgh

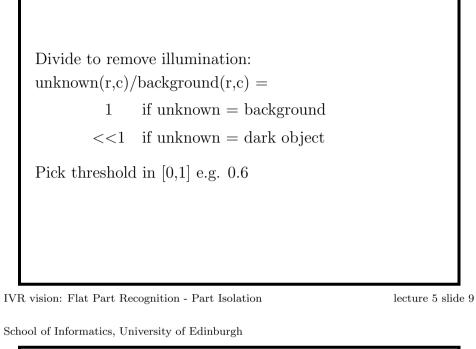
Background Removal

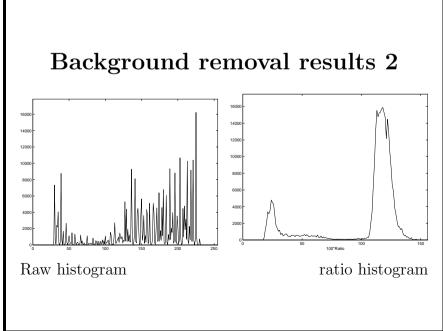
If known but spatially varying illumination

Reflectance: percentage of input illumination reflected. A function of the light source, viewer and surface colors and positions.

Recall:

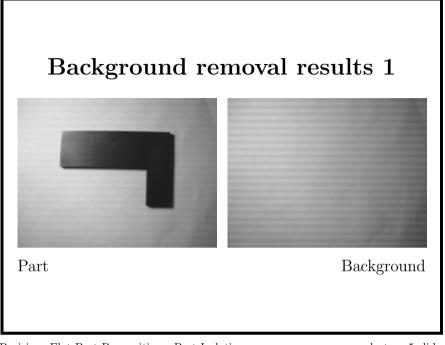
 $background(r,c) = illumination(r,c)*bg_reflectance(r,c)$ $object(r,c) = illumination(r,c)*obj_reflectance(r,c)$





IVR vision: Flat Part Recognition - Part Isolation

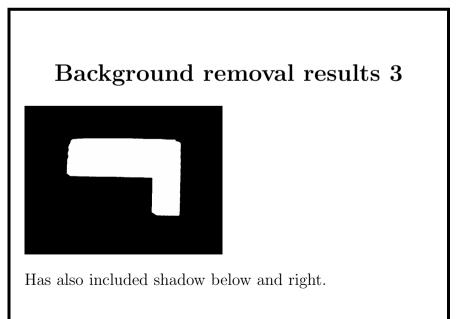
School of Informatics, University of Edinburgh



IVR vision: Flat Part Recognition - Part Isolation

lecture 5 slide 10

School of Informatics, University of Edinburgh



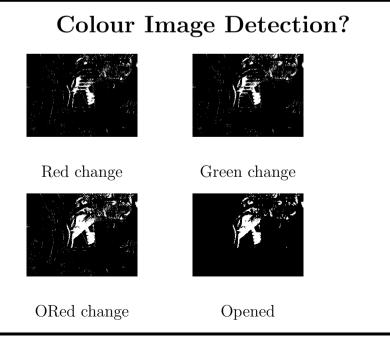
Midlecture Problem

What might happen to the background detection process if the background was highly textured?

IVR vision: Flat Part Recognition - Part Isolation

lecture 5 slide 13 $\,$

School of Informatics, University of Edinburgh



Colour Image Detection?

Before

After

change=open(2,coloror(thresh(35,abs(Before-After)))) (Use HSI instead of RGB to cope with illumination changes?)

IVR vision: Flat Part Recognition - Part Isolation

lecture 5 slide 14

School of Informatics, University of Edinburgh

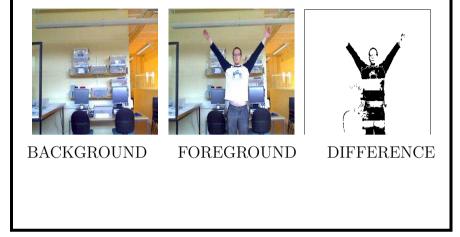
Isolation in Complex Scenes

Threshold problems with image I:

- Many objects
- Space varying illumination

If have constant background image B (ie. before actions) Try: thres(|I - B|) instead of thres(I)Do in each of 3 colour channels: $thres(|I_r - B_r|) || thres(|I_g - B_g|) || thres(|I_b - B_b|)$

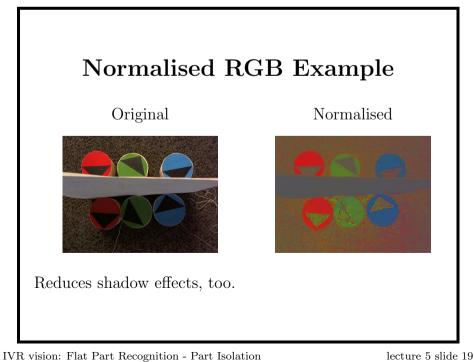
Background Differencing Results



IVR vision: Flat Part Recognition - Part Isolation

lecture 5 slide 17

School of Informatics, University of Edinburgh



Isolation with varying lighting

Use normalised RGB:

$$(r,g,b) \rightarrow (\frac{r}{r+g+b}, \frac{g}{r+g+b}, \frac{b}{r+g+b})$$

Double illumination still gives same normalised RGB:

$$(\frac{r}{r+g+b}, \frac{g}{r+g+b}, \frac{b}{r+g+b}) = (\frac{2r}{2r+2g+2b}, \frac{2g}{2r+2g+2b}, \frac{2b}{2r+2g+2b})$$

IVR vision: Flat Part Recognition - Part Isolation

lecture 5 slide 18

School of Informatics, University of Edinburgh

Description for Recognition

'L'-shaped part of length 12 cm, width 8 cm, ... Hard to get accurate descriptions:

- Need a good language for object description. Here edges or corners would work but not in general eg. human faces
- Hard to get reliable, consistent data descriptions: noise, shadows, shading, surface texture, highlights, viewpoint changes, ...

So, here use property-based descriptions. A common current approach, but ambiguous (how many flat objects with area A?).

IVR vision: Flat Part Recognition - Part Isolation

lecture 5 slide 21

School of Informatics, University of Edinburgh

Position and Scale Invariant Properties

compactness:

 $\frac{1}{4\pi} \frac{perimeter^2}{area}$ minimum 1.0 for circle

topological properties: number of corners, concavities

relative properties: average angle between consecutive line segments

IVR vision: Flat Part Recognition - Part Isolation

Simple Properties

Let Image be a binary image with the desired object as 1

Area - bwarea(Image)

Perimeter- bwarea(bwperim(Image,4))

Reasonably robust to noise Independent of translation and orientation Not independent of scale/zoom

IVR vision: Flat Part Recognition - Part Isolation

lecture 5 slide 22

School of Informatics, University of Edinburgh

Moments

Family of stable binary (and grey level) shape descriptions

Can be made invariant to translation, rotation, scaling

Let $\{p_{rc}\}$ be the binary (0,1) image pixels for row r and col c where 1 pixels are the object School of Informatics, University of Edinburgh

Moments II

Area $A = \sum_r \sum_c p_{rc}$ Center of mass $(\hat{r}, \hat{c}) = (\frac{1}{A} \sum_r \sum_c r p_{rc}, \frac{1}{A} \sum_r \sum_c c p_{rc})$

A family of 'central' (translation invariant) moments (for any u and v):

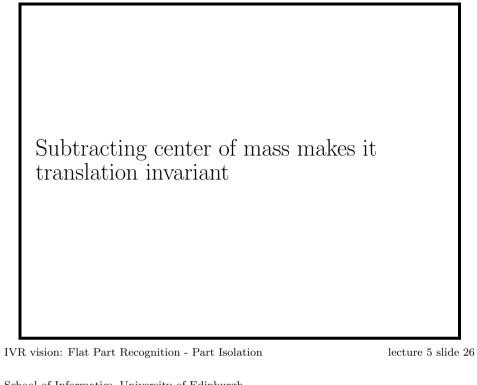
$$m_{uv} = \sum_{r} \sum_{c} (r - \hat{r})^u (c - \hat{c})^v p_{rc}$$

IVR vision: Flat Part Recognition - Part Isolation

lecture 5 slide 25 $\,$

School of Informatics, University of Edinburgh

Scale invariant moments If double in dimensions, then moment m_{uv} increases by $2^u 2^v$ for weightings and 4 for the number of pixels. Similarly, area A increases by 4, and thus $A^{(u+v)/2+1}$ increases by $4 \times 2^u 2^v$



School of Informatics, University of Edinburgh

So, the ratio: $\mu_{uv} = \frac{m_{uv}}{A^{(u+v)/2+1}}$ is invariant to scale.

IVR vision: Flat Part Recognition - Part Isolation

Rotation invariant moments

Moment invariant theory has identified methods to generate various orders of moments invariant to rotation. 6 functions ci_i with rescaling applied to get into similar numerical ranges

Area $A = \sum_r \sum_c p_{rc}$ Center of mass (\hat{r}, \hat{c})

Define complex uv central moment:

$$c_{uv} = \sum_{r} \sum_{c} ((r - \hat{r}) + i(c - \hat{c}))^{u} ((r - \hat{r}) - i(c - \hat{c}))^{v} p_{rc}$$

IVR vision: Flat Part Recognition - Part Isolation

lecture 5 slide 29 $\,$

School of Informatics, University of Edinburgh

```
Rotation invariant moments II

Rescaled (so values in similar range) rotation invariants:

ci_1 = real(s_{11})

ci_2 = real(1000 * s_{21} * s_{12})

ci_3 = 10000 * real(s_{20} * s_{12} * s_{12})

ci_4 = 10000 * imag(s_{20} * s_{12} * s_{12})

ci_5 = 1000000 * real(s_{30} * s_{12} * s_{12} * s_{12})

ci_6 = 1000000 * imag(s_{30} * s_{12} * s_{12} * s_{12})
```

Scale invariance

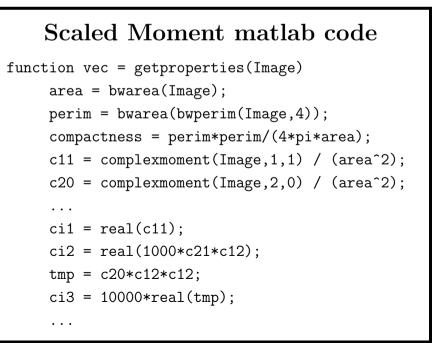
Get specific scale invariant moments: $s_{11} = c_{11}/(A^2)$

 $s_{20} = c_{20}/(A^2)$ $s_{21} = c_{21}/(A^{2.5})$ $s_{12} = c_{12}/(A^{2.5})$ $s_{30} = c_{30}/(A^{2.5})$

IVR vision: Flat Part Recognition - Part Isolation

lecture 5 slide 30

School of Informatics, University of Edinburgh



Example	inva	riant	property values
	>	~	r
compactness	1.93	1.81	1.90
ci_1	0.23	0.27	0.25
ci_2	0.18	0.37	0.45
ci_3	0.08	-0.50	0.11
ci_4	-0.00	0.37	-0.64
ci_5	0.23	-0.47	0.09
ci_6	-0.00	0.07	-0.63

IVR vision: Flat Part Recognition - Part Isolation

lecture 5 slide 33

School of Informatics, University of Edinburgh

What We Have Learned

- 1. Isolating Objects
- 2. Moments
- 3. Moment Invariants
- 4. Feature Vectors

Feature Vector

Standard description for many visual processes: form a vector from set of descriptions:

 $\vec{x} = (compactness, ci_1, ci_2, ci_3, ci_4, ci_5, ci_6)'$

Multiple vectors if several structures or locations to describe

These vectors are then used in next processes, eg. recognition

IVR vision: Flat Part Recognition - Part Isolation

lecture 5 slide 34