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Threshold Selection Peak Pick Code

Assume 2 big peaks, brighter background is higher: Omit special cases for ends of array and closing ‘end’s.

1. Find biggest peak (background) peak = find(tmpl == max(tmpl)); 7’ find largest peak

2. Find next biggest peak in darker direction

: o % find highest k to left
3. Find lowest point in trough between peaks 4 1r11 lf est peak to e
xmaxl = -1;

for i = 2 : peak-1
if tmpl1(i-1) < tmpl(i) & tmpl(i) >= tmpl(i+1)
& tmpl(i)>xmaxl
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xmaxl = tmpl(i);
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pkl = 1;
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Adaptive Thresholding

What if varying and unknown background? Can select
threshold locally

% find deepest valley between peaks At each pixel, use a different threshold calculated from
xminl = max(tmpl)+1; an NxN window (N=100)
for i = pkl+l : peak-1 Use: threshold = mean(window) - Constant (eg. 12)

if tmpl(i-1) > tmpl(i) & tmpl(i) <= tmpl(i+1)
& tmpl(i)<xminl

ooooo
11111
uuuuu

xminl = tmpl(i);
thresh = i;

nnnnn

Image with intensity gradient Histogram
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N = 100;

[H,W] = size(inimage);

outimage = zeros(H,W);

N2 = floor(N/2);

for i = 1+4N2 : H-N2
for j = 1+N2 : W-N2

% extract subimage

if inimage(i,j) < threshold
outimage(i,j) = 1;
else

outimage(i,j) = 0;

Adaptive Thresholding Code

subimage = inimage(i-N2:i+N2, j-N2:j+N2);
threshold = mean(mean(subimage)) - 12;
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Adaptive Thresholding Results

Selection has included shadow at bottom and right
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end
end

end
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positions.

Recall:

Background Removal

If known but spatially varying illumination

Reflectance: percentage of input illumination reflected. A
function of the light source, viewer and surface colors and

background(r,c) = illumination(r,c)*bg_reflectance(r,c)

object(r,c) = illumination(r,c)*obj_reflectance(r,c)
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Background removal results 1

Divide to remove illumination:
unknown(r,c)/background(r,c) =
1 if unknown = background

<<1 if unknown = dark object

Pick threshold in [0,1] e.g. 0.6

Part Background
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Background removal results 2 Background removal results 3
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Raw histogram ratio histogram Has also included shadow below and right.
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Colour Image Detection?

Midlecture Problem

What might happen to the
background detection process if

the background was highly L i B
textured? e o

change=open(2,coloror(thresh(35,abs(Before-After))))
(Use HSI instead of RGB to cope with illumination

changes?)
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Colour Image Detection?
Isolation in Complex Scenes

Threshold problems with image I:

e Many objects

e Space varying illumination
Red change

If have constant background image B (ie. before actions)
Try: thres(| I — B |) instead of thres(I)

Do in each of 3 colour channels:

thres(| I, — B, |)|[thres(| I, — By |)|[thres(| I, — By |)

ORed change Opened
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Isolation with varying lighting

Background Differencing Results Use normalised RGB:
T R r g b
o ; (T7 g, b) - ( ) ) )
r+g+br+g+br+g+>b
w Double illumination still gives same normalised RGB:
g B § (—" g b )
B == B (“ r+g+br+g+br+g+>b

BACKGROUND FOREGROUND DIFFERENCE — 2r 2g 2b )
2r +2g + 20" 2r + 29 + 20’ 2r + 29 + 20
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Description for Recognition
Normalised RGB Example

Original Normalised

‘L’-shaped part of length 12 cm, width 8 cm, ...
Hard to get accurate descriptions:

e Need a good language for object description. Here
edges or corners would work but not in general - eg.

human faces

Reduces shadow effects. too e Hard to get reliable, consistent data descriptions:

noise, shadows, shading, surface texture, highlights,

viewpoint changes, ...
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Simple Properties

Let Image be a binary image with the desired object as 1

So, here use property-based descriptions. A common Area - bwarea(Image)
current approach, but ambiguous (how many flat objects
with area A7). Perimeter- bwarea(bwperim(Image,4))

Reasonably robust to noise
Independent of translation and orientation

Not independent of scale/zoom
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Position and Scale Invariant Moments

Properties Family of stable binary (and grey level)

compactness: shape descriptions
: 2 .

fw minimum 1.0 for circle . . .

™ area Can be made invariant to translation,

topological properties: rotation, scaling

ber of corners, concavities . . :
HHHDED HHETS, COnCAavit Let {p,c} be the binary (0,1) image pixels

relative properties: for row 7 and col ¢ where 1 pixels are the

average angle between consecutive line object
segments
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Moments 11

Area A =%, 5. Dre

Center of mass

(727 é) — (% 2 2 TPrey % 2 2 Cprc)

moments (for any v and v):

Moy = er ZC:(T —7)"(c— ¢)'Pre

A family of ‘central’ (translation invariant)
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Scale invariant moments

the number of pixels.

Similarly, area A increases by 4, and

AWF0)/24 1 increases by 4 x 242V

If double in dimensions, then moment m,,,

increases by 22" for weightings and 4 for

thus
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Subtracting center of mass makes it
translation invariant
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So, the ratio:

mU'U

Fuv = " (o) /241

1s Invariant to scale.
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Rotation invariant moments

Moment invariant theory has identified methods to

generate various orders of moments invariant to rotation.

6 functions ci; with rescaling applied to get into similar

numerical ranges

Area A=5,.>.Pre

Center of mass (7, ¢)

Define complex uv central moment:

Cuw = o e((r = 7) e = €))"((r = 7) = i(c = €))"Pre
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Scale invariance

Get specific scale invariant moments:

S11 = 011/(A2>

S20 = 620/(142)

S21 = 021/(142'5)

S12 = 012/(A2'5)
( .

S30 = 630/ A? 5)
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Rotation invariant moments 11

Rescaled (so values in similar range) rotation invariants:
ciy = real(s11)

cig = real(1000 * s91 * S12)

ciz = 10000 * real(sog * S12 * S12)

ciy = 10000 * imag(seg * S1 * S12)

cis = 1000000 * real(s3g * S12 * S12 * S12)

cig = 1000000 * imag(ssp * S12 * S12 * S12)
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Scaled Moment matlab code

function vec = getproperties(Image)
area = bwarea(Image);
perim = bwarea(bwperim(Image,4));
compactness = perimxperim/(4*pix*area);
cll = complexmoment (Image,1,1) / (area”2);
c20 = complexmoment (Image,2,0) / (area”2);

cil = real(cll);

ci2 = real(1000*c21*c12);
tmp = c20*c12*cl2;

ci3 = 10000*real (tmp) ;
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Example invariant property values

YA r

compactness 1.93  1.81 1.90

ciy 023 027 025

iy 018 037 045

Cig 0.08 -0.50 0.11

Ciy 0.00 037 -0.64

cis 023 -047  0.09

cig -0.00 0.07 -0.63

IVR vision: Flat Part Recognition - Part Isolation lecture 5 slide 33

School of Informatics, University of Edinburgh

What We Have Learned

2. Moments

1. Isolating Objects

3. Moment Invariants

4. Feature Vectors
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Feature Vector

Standard description for many visual
Processes:

—

x
compactness, ciy, Clo, Cl3, Clyg, Cls, Cl

Multiple vectors if several structures
locations to describe

These vectors are then used in next
processes, eg. recognition

form a vector from set of descriptions:

6)

or
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