Lecture **11**:

Reaching and Grasping

- Reference Frames
- Configuration space
- Reaching
- Grasping

Michael Herrmann

michael.herrmann@ed.ac.uk, phone: 0131 6 517177, Informatics Forum 1.42

Robot arms

- Typically constructed with rigid *links* between movable one d.o.f. *joints*
- Joints typically
 - -*rotary* (revolute) or *prismatic* (linear)

Kinematic pairs

Lower pairs

- Rotary (hinge, 1 axis)
- Prismatic (linear)
- Cylindrical (rotary + linear)
- Spherical (3 rotary)
- Planar (2 linear + rotary)

Higher pairs (different curvature): rolling bearing, cam joint, ...

Wrapping pair: belt, chain, ...

- Linkages: Crankshaft-piston, ...
 - Kinematic chains

Classification by geometry

Rectangular Coordinate Robot

Cylindrical Coordinate Robot

Variants

Gantry Robot

bot Ari

Articulated Arm Robot

adapted from http://www.osha.gov/dts/osta/otm/otm_iv/otm_iv_4.html

Robot arms (manipulators)

Classification by topology (kinematic chain):

- (left) Serial chain
- Parallel manipulator

(below)

fr.wikipedia.org

Robot arm: End effectors (at Tool Center Point at

top of kinematic chain)

- Simple push or sweep
- Gripper different shape, size or strength
- Hook, pins, needles (e.g. for handling textiles)
- Vacuum cup, magnetic
- Adhesion by contact (e.g. glue)
- Tools for specific purposes (drills, welding torch, spray head, scalpel, scoop,...)
- Hand for variety of purposes

Issues in choosing actuators

- Load (e.g. torque to overcome inertia of arm)
- Speed (fast enough but not too fast)
- Accuracy (will it move to where you want?)
- Resolution (can you specify exactly where?)
- Repeatability (will it do this every time?)
- Reliability (mean time between failures)
- Compliance (how does stiffness change?)
- Power consumption (how to feed it)
- Energy supply & its weight
- Geometry (linear vs. rotary) and other trade-offs between physical design and ability to *control*

Prehension

Goal: Understand ideal robot mechanisms for reaching, grasping and manipulation

Robot positions and configurations as a function of control parameters – kinematics

Need to know:

- Representing mechanism geometry
- Standard configurations
- Degrees of freedom
- Grippers and graspability conditions

Vectors & Points in 3D

3D Coordinate Systems usually defined as left handed (right handed reverses the +Z direction)

Local Reference Frames

- \vec{p} can be expressed by
- Local (translated) coordinates (d, e, f)
- Global (untranslated) coordinates (a+d, b+e, c+f)

Translations

Rotations

Rotate about Z axis

A lot of conventions

Here: θ positive is anti-clockwise when looking along +Z

- \vec{p} in local (rotated) coordinates is $(a,b,c)^{T'}$
- *p* in global (unrotated) coordinates is
 (a cos(θ)-b sin(θ), a sin(θ)+b cos(θ),c)^T

Rotation Matrix Representation I

 $\vec{p} = (a, b, c)^{\mathsf{T}} \longrightarrow (a \times \cos(\theta) - b \times \sin(\theta), a \times \sin(\theta) + b \times \cos(\theta), c)^{\mathsf{T}}$

$$R_{z}(\theta_{z})\vec{p} = \begin{bmatrix} \cos(\theta_{z}) & -\sin(\theta_{z}) & 0\\ \sin(\theta_{z}) & \cos(\theta_{z}) & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a\\ b\\ c \end{bmatrix}$$

Much more compact and clearer!

Rotation Matrix Representation II

$$R_{x}(\theta_{x}) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta_{x}) & -\sin(\theta_{x}) \\ 0 & \sin(\theta_{x}) & \cos(\theta_{x}) \end{bmatrix}$$
$$R_{y}(\theta_{y}) = \begin{bmatrix} \cos(\theta_{y}) & 0 & \sin(\theta_{y}) \\ 0 & 1 & 0 \\ -\sin(\theta_{y}) & 0 & \cos(\theta_{y}) \end{bmatrix}$$

Other Rotation Representations

Semi-Circular

All equivalent but different parameters:

- Yaw, pitch, roll
- Azimuth, elevation, twist (slant, tilt, twist)
- Axis + angle \rightarrow Quaternions
- N.B.: in mammals:

Full Rotation Specification

- Need 3 angles for arbitrary 3D rotation
- Lock & key example (axis and direction of key bit)
- Rotation angles (α, β, γ) .

 $R(\alpha,\beta,\gamma)p = R_z(\gamma)R_y(\beta)R_x(\alpha)p$

• Warning: rotation order by convention but must be used consistently:

 $R_{z}(\gamma)R_{y}(\beta)R_{x}(\alpha) \neq R_{x}(\alpha)R_{y}(\beta)R_{z}(\gamma)$

Full Transformation Specification

Each connection has a new local coordinate system

+Z'

transform $(\theta_x, \theta_y, \theta_z, t_x, t_y, t_z) = trf(\theta, t)$

Homogeneous Coordinates I

Messy when more than 2 links, as in robot So: pack rotation and translation into

Homogeneous coordinate matrix

Extend points with a 1 from 3-vector to 4-vector Extend vectors with a 0 from 3-vector to 4-vector Pack rotation and translation into 4x4 matrix:

$$H_1 = \begin{bmatrix} R(\vec{\theta}_1) & \vec{t}_1 \\ \vec{0} & 1 \end{bmatrix}$$

3 rotation parameters: $\vec{\theta_1}$ 3 translation parameters: $\vec{t_1}$

Homogeneous matrices

view plane z=0, center of projection at (0,0,-d)

Isometries also represented as 6D vector: $trf(\alpha,\beta,\gamma,I_x,I_y,I_z)$

Longer chains for robot arms (e.g. 6 links):

 $H_1H_2H_3H_4H_5H_6p^*$

Joint geometry

Linear (prismatic) joint: slides parametrize one translation direction per joint e.g. Sliding in the *x* direction

 $trf(0,0,0,\lambda,0,0)$

Hinge (revolute) joint: rotates parametrize one rotation angle per joint e.g. Rotation about *x*-axis $trf(\theta,0,0,0,0,0)$

Configuration Space I

Alternative representation to scene coordinates

Number of joints = J J-dimensional space Binary encoding: 0 for invalid pose, 1 for free space Real-valued encoding:

"distance" from goal configuration

Point in C.S. = configuration in real space Curve in C.S. = motion path in real space

Configuration Space II

ALLOWABLE CONFIGURATIONS

Dynamics: Trajectory Planning

What is the shortest path in configuration space? At what speed the path is traversed?

- Cost to go (energy or wear)
- Time to goal
- Least perturbations (predictability)
- Maximal smoothness
- Minimal intervention

Forward and Inverse Kinematics

Forward:

Given joint angles, find gripper position Easy for sequential joints in robot arm: just multiply matrices

Inverse:

Given desired gripper position, find joint angles Hard for sequential joints – geometric reasoning

Sequential & Parallel Mechanisms

Simplified into 2D

Serial manipulator vary: $\theta_1, \theta_2, \theta_3$

Computing Positions & Parameters

	Serial	Parallel
Forward (param->position)	Easy (just multiply matrices)	Hard (messy robot specific geometry)
Inverse (position->param)	Hard (messy robot specific geometry)	Easy (just read off lengths from gripper position)

N.B.: Biological motor control Equilibrium point hypothesis

A. G. Feldman 66 Bizzi et al. 78 Gribble et al. 98

- Extensors and flexors controlled by different pathways:
- Force-field experiments: violation of equifinality at variations of velocity-dependent load (Hinder & Milner 03)

Specifying Robot Positions

- 1. Actuator level: specify voltages that generate required joint angles.
- 2. Joint level: specify joint angles and let system calculate voltages.
- 3. Effector level: specify tool position and let system compute joint angles.
- 4. Task level: specify the required task and let the system compute the sequence of tool positions

Most robot programming is at levels 2 and 3.

Grippers and Grasping

- Gripper: special tool for general part manipulation
- Fingers/gripper: 2, 4, 5
- Joints/finger: 1, 2, 3

Your hand: 4 fingers * 4 DoF + thumb * 5 DoF+ wrist * 6 DoF = 27 DoF (22 controllable DoF).

Barrett Technology Hand

- 2 parallel fingers (spread uniformly)
- 1 opposable finger

DoF: 4 fingers (2 finger joints bend uniformly)

Shadow Dextrous Robot Hand

http://www.shadowrobot.com/hand/

High-Speed Robotic Hand

Ishikawa Komuro

Skillful Manipulation Based on High-speed Sensory Motor Fusion

Finger Contact Geometry

- Coefficient of friction at fingertip: $\mu \in [0,1]$
- Surface normal: Direction perpendicular to surface: \vec{n}
- Friction cone: Angles within $\alpha = \cos^{-1}(\mu)$ about surface normal
- Force direction: *f* direction in which finger pushed
- No-slip condition: $\vec{f} \cdot \vec{n} \ge \mu$

Force Closure

Need balanced forces or else object twists 2 fingers – forces oppose: $\vec{f_1} + \vec{f_2} = 0$ 3 fingers – forces meet at point: $\vec{f_1} + \vec{f_2} + \vec{f_3} = 0$ Force closure: point where forces meet lies within 3 friction cones otherwise object slips

Other Grasping Criteria

Some heuristics for a good grasp:

- Contact points form nearly equilateral triangle
- Contact points make a big triangle
- Force focus point near Center of Mass (CoM)

Grasp Algorithm

- 1. Isolate boundary
- 2. Locate large enough smooth graspable sections
- 3. Compute surface normals
- 4. Pick triples of grasp points
- 5. Evaluate for closure & select by heuristics
- 6. Evaluate for reachability and collisions
- 7. Compute force directions and amount
- 8. Plan approach and finger closing strategy
- 9. Contact surface & apply grasping force
- 10. Lift (& hope)

Kinematics Summary

- 1. Need vector & matrix form for robot geometry
- 2. Geometry of joints & joint parameters
- 3. Forward & inverse kinematics
- 4. Degrees of freedom
- 5. Grippers & grasping conditions