
Introduction to Theoretical Computer Science

Tutorial Sheet 6

The first three questions are exercises in working with simple types and recursion.
The next two ask you to think about various possible extensions to types. (Everything,
and far more, is of course in Pierce.)

(1) What types make the expression λf.λg.λx.fx(gx) well typed? (This expression is
known as the S combinator.)

(2) The term fix(λx:nat.x) is well-typable. What is its type? What is the value of the
term?

(3) Here is a recursive function that takes a nat and returns its Church numeral version:

letrec church = λn:nat.if(= n 0)(λf.λx.x)(λf.λx.f(church(− n 1)fx)) in church(2)

What types should we give to f and x?
Unsugar the declarations into λ and fix, and evaluate it using our usual call-by-

name strategy. Does it evaluate all the way to the expected answer λf.λx.f(fx)?
(4) Languages like Haskell and ML allow the creation of ‘tagged union’ or ‘variant’ types,

such as
data IntOrBool = MyInt int | MyBool bool

Such types can equally well be added to the simply-typed λ-calculus, using the
syntax of your choice. How would you actually do this? What would you need to
add?

Now throw type variables into the mix. Suppose we allow ourselves to write type
equations such as

α = Empty(unit) | Cons(nat, α)

What is the? a? solution to this equation?
What about

α = Cons(nat, α) ?

(5) Our inability to well-type the fixpoint combinator

Y
def
= λF.(λX.F (XX))(λX.F (XX))

arose because of the application of X to itself, meaning that the type of X must be
the same as the type of its argument.

Now that we’ve thought about recursive types in the last question, we can deal
with it. Suppose τ is some type, and we want the F to have type τ → τ – for
example, in the definition of the factorial function on slide 78, we want F :nat →
nat→ (nat→ nat), so τ is nat→ nat.

Then we need X to be a function returning a τ ; then if the argument type of X
is α, we need

α = α→ τ

Imagine we have such a type, call it ατ . Show that we can now well-type the specific
version of the Y where F :τ → τ .

The general way of extending the type system to allow such thing is to add a
‘fixpoint’ operator at the type level: our ατ would be written µα.α→ τ .

With some more work, we can embed the entire pure untyped λ-calculus into the
typed calculus with recursive types: see the end of section 20.1 of Pierce for the
details.


