
Introduction to Theoretical Computer Science

Tutorial Sheet for Week 9

(1) Recall that the Church numerals are a way of encoding natural numbers as λ-terms,
thus:
• 0 is λf.λx. x
• 1 is λf.λx. f x
• 2 is λf.λx. f (f x)
• and so on

We also have Church booleans which encode boolean values by choosing between two
options:
• False is λa.λb. b
• True is λa.λb. a

Write a λ-term which represents a function that determines if the given argument
represents an even number. That is, given a term representing a number n, it reduces
to (the Church encoding of) True if the number is even, and False otherwise.

(2) One way to code up list structures in λ-calculus is this. The list [x, y, z] is represented
as a function that takes two arguments c and n, and gives back c x (c y (c z n)); in

other words, [x, y, z]
def
= λc.λn. c x (c y (c z n)). Similarly for lists of other lengths.

Explain this construction. (Hint: the choice of ‘c’ and ‘n’ as letters is not random.)
Give definitions in this encoding of λ-terms representing the nil list, the cons

function, and the head (or car for LISPers) function.
What happens if you call your head function on the nil list?

(3) The recursion combinator we used was

Y
def
= λF.(λX. F (X X))(λX. F (X X))

What happens if you try to use Y in a call-by-value evaluation strategy?
Here is the version of Y that works for call-by-value:

Y′ def
= λF.(λX. F (λZ. X X Z))(λX. F (λZ. X X Z))

This is very similar – study it, and describe what technique, mentioned in the
slides, is being used to make Y′ from Y. (Hint: a Greek letter is involved.)

(4) If t is a well-typed λ-term t : τ , then it evaluates into a well-typed term t′ : τ . Is it

true that for terms s and s′, if s′ : τ and s
β→ s′, then s : τ?

(5) What types make the expression λf.λg.λx. f x (g x) well typed? (This expression
is known as the S combinator.)

(6) The term fix(λx:nat. x) is well-typable. What is its type? What is the value of the
term?

(7) Here is a recursive function that takes a nat and returns its Church numeral version
(assuming appropriate built-in equality and arithmetic functions):

church ≡ λn:nat. if(= n 0)(λf.λx. x)(λf.λx. f(church (− n 1) f x))

What types should we give to f and x?
Unsugar the recursive definition above into λ and fix, and evaluate church 2 using

our usual call-by-name strategy. Does it evaluate all the way to the expected answer
λf.λx. f (f x)?

1


