1 Monomorphic example

We’ll refer to the four type judgement rules as Const, Var, λ, App.

The goal is to type \(\lambda f. \lambda x. \lambda y. \text{suc}(f(x + y)) \).

Goal: find \(\alpha \) such that \(\vdash \lambda f. \lambda x. \lambda y. \text{suc}(f(x + y)) : \alpha \): apply \(\lambda \), putting \(\alpha = \beta \rightarrow \gamma \), giving subgoal:

\[
\vdash f : \beta \vdash \lambda x. \lambda y. \text{suc}(f(x + y)) : \gamma \quad \text{apply \(\lambda \), putting \(\gamma = \delta \rightarrow \epsilon \), giving subgoal}
\]

\[
\vdash f : \beta, x : \delta, y : \zeta \vdash \text{suc}(f(x + y)) : \eta \quad \text{apply \(\text{App} \), giving two subgoals}
\]

\[
\vdash f : \beta, x : \delta, y : \zeta \vdash \text{suc} : \theta \rightarrow \eta \quad \text{apply \(\text{Const} \), with \(\theta = \text{nat} \rightarrow \text{nat} \)}
\]

\[
\vdash f : \beta, x : \delta, y : \zeta \vdash f : \iota \rightarrow \theta \quad \text{apply \(\text{Var} \), with \(\beta = \iota \rightarrow \theta \)}
\]

\[
\vdash f : \beta, x : \delta, y : \zeta \vdash (x + y) : \iota \quad \text{apply \(\text{App} \), giving two subgoals}
\]

\[
\vdash f : \beta, x : \delta, y : \zeta \vdash + : \kappa \rightarrow \iota \quad \text{apply \(\text{Const} \), with \(\omega = \kappa \rightarrow \iota \)}
\]

\[
\vdash f : \beta, x : \delta, y : \zeta \vdash x : \omega \quad \text{apply \(\text{Var} \), with \(\omega = \delta \)}
\]

\[
\vdash f : \beta, x : \delta, y : \zeta \vdash y : \kappa \quad \text{apply \(\text{Var} \), with \(\kappa = \zeta \)}
\]

Now solve the underlined equations by substitution and matching, giving \(\omega = \kappa = \iota = \zeta = \delta = \theta = \eta = \text{nat} \) and the rest accordingly.

\[\square\]
2 Polymorphic example

The example was \(\text{let id} = \lambda x. x \in \langle \text{id}(1), \text{id}(\text{true}) \rangle \). Here is the inference algorithm:

Goal: find \(\alpha \) such that \(\vdash \text{let id} = \lambda x. x \in \langle \text{id}(1), \text{id}(\text{true}) \rangle : \alpha \). Apply Let, giving two subgoals

Note: the use of the meta-variable \(\sigma \) indicates that we will solve the type inference for the first goal completely, before plugging it into the generalization in the second subgoal

\[\vdash \lambda x. x : \sigma \]: apply \(\lambda \), with \(\sigma = \beta \rightarrow \beta \), giving subgoal

\[\vdash x : \beta \vdash x : \beta \]: apply Const □

There are no other equations, so the most general type for \(\lambda x. x \) is \(\beta \rightarrow \beta \)

Now the second subgoal of Let is:

\[\vdash \text{id} : \forall \beta. \beta \rightarrow \beta \vdash \langle \text{id}(1), \text{id}(\text{true}) \rangle : \alpha \]

We calculated \(\sigma = \beta \rightarrow \beta \), so apply the generalization giving

\[\vdash \text{id} : \forall \beta. \beta \rightarrow \beta \vdash \langle \text{id}(1), \text{id}(\text{true}) \rangle : \alpha \] apply Prod, with \(\alpha = \gamma \times \delta \), giving two subgoals

\[\vdash \text{id} : \forall \beta, \beta' \rightarrow \beta \vdash \text{id}(1) : \gamma \] apply App, giving two subgoals

\[\vdash \text{id} : \forall \beta, \beta' \rightarrow \beta \vdash \beta : \gamma \] apply Var, giving two subgoals

Now we instantiate \(\forall \beta, \beta \rightarrow \beta \) with a fresh type variable to \(\beta' \rightarrow \beta' \)

\[\vdash \text{id} : \forall \beta, \beta' \rightarrow \beta \vdash 1 : \epsilon \] apply Const with \(\epsilon = \text{nat} \)

\[\vdash \text{id} : \forall \beta, \beta' \rightarrow \beta \vdash \text{id}(\text{true}) : \delta \] apply App, giving two subgoals

Now solve the underlined equations, getting \(\zeta = \beta'' = \delta = \text{bool} \) and \(\epsilon = \beta' = \gamma = \text{nat} \), and thus \(\alpha = \text{nat} \times \text{bool} \) (Note that \(\beta \) does not appear, because it was solved out and generalized in a subproof.)