Note 2 – doing reductions

I was asked for an example of how one might write down a reduction for examination purposes. Here’s an example from the slides written out in a way that I would give full marks to on an exam.

Question: Show, by reduction from Halting, that the Uniform Halting problem is undecidable.

Answer: It is a theorem that if Q can be reduced by a many-one (or Turing) reduction to Q', and Q is undecidable, then Q' is undecidable.

Given an instance (M, R) of Halting, where M is the program of a machine and R its input, construct an instance of Uniform Halting as follows: let M' be a machine which ignores its input, and behaves as M on input R. It is clear that the construction of M' is computable, by, e.g., starting M' with code that loads R into its registers and then jumps to the start of M.

For a reduction, we need that $(M, R) \in H \iff M' \in UH$. This is true by construction: if (M, R) halts, then M', which behaves as M on R, halts whatever its input; conversely, if M' halts on all (or indeed any) input, then M halts on R.

Thus we have a reduction and have shown the result.

If you don’t like writing words, here’s a reduced verbiage version, which is ok if it’s correct, but runs the risk of getting less partial credit if it has mistakes!

Answer: We know if $Q \leq_m Q'$ and Q undecidable, then Q' undecidable. Let (M, R) be a machine and input. Define M' to ignore its input and run M on R. The function $(M, R) \mapsto M'$ is clearly computable, and M' is an instance of UH. By construction, M' halts on any input iff M halts on R. Thus $H \leq_m UH$ and we are done.