Introduction to Theoretical Computer Science

Lecture 9 [bonus]: Arithmetical Hierarchy

Dr. Liam O'Connor
University of Edinburgh
Semester 1, 2023/2024

What we have so far

Sigmas

We shall introduce notation to describe decision problems.

Sigma

The set Σ_{1}^{0} describes all problems that can be phrased as $\{y \mid \exists x \in \mathbb{N} . R(x, y)\}$, where R is a decidable predicate.

Sigmas

We shall introduce notation to describe decision problems.

Sigma

The set Σ_{1}^{0} describes all problems that can be phrased as $\{y \mid \exists x \in \mathbb{N} . R(x, y)\}$, where R is a decidable predicate. We can replace the \mathbb{N} with any c.e. set (i.e. type 0).

Sigmas

We shall introduce notation to describe decision problems.

Sigma

The set Σ_{1}^{0} describes all problems that can be phrased as $\{y \mid \exists x \in \mathbb{N} . R(x, y)\}$, where R is a decidable predicate. We can replace the \mathbb{N} with any c.e. set (i.e. type 0).

■ If a problem $P \in \Sigma_{1}^{0}$ then P is semidecidable. Why?

Sigmas

We shall introduce notation to describe decision problems.

Sigma

The set Σ_{1}^{0} describes all problems that can be phrased as $\{y \mid \exists x \in \mathbb{N} . R(x, y)\}$, where R is a decidable predicate. We can replace the \mathbb{N} with any c.e. set (i.e. type 0).

■ If a problem $P \in \Sigma_{1}^{0}$ then P is semidecidable. Why? (we can enumerate all x and test $R(x, y)$, halting if true)

Sigmas

We shall introduce notation to describe decision problems.

Sigma

The set Σ_{1}^{0} describes all problems that can be phrased as $\{y \mid \exists x \in \mathbb{N} . R(x, y)\}$, where R is a decidable predicate. We can replace the \mathbb{N} with any c.e. set (i.e. type 0).

■ If a problem $P \in \Sigma_{1}^{0}$ then P is semidecidable. Why? (we can enumerate all x and test $R(x, y)$, halting if true)

- If a problem P is semidecidable then $P \in \Sigma_{1}^{0}$. Why?

Sigmas

We shall introduce notation to describe decision problems.

Sigma

The set Σ_{1}^{0} describes all problems that can be phrased as $\{y \mid \exists x \in \mathbb{N} . R(x, y)\}$, where R is a decidable predicate. We can replace the \mathbb{N} with any c.e. set (i.e. type 0).

- If a problem $P \in \Sigma_{1}^{0}$ then P is semidecidable. Why? (we can enumerate all x and test $R(x, y)$, halting if true)
- If a problem P is semidecidable then $P \in \Sigma_{1}^{0}$. Why?

Definition: Kleene's \mathcal{T} Predicate

$T(\ulcorner M\urcorner, x, y)=M$ accepts x in y steps.
If a machine M semi-decides P, then $P=\{x \mid \exists y \cdot \mathcal{T}(\ulcorner M\urcorner, x, y)\}$

Pis

Pi

The set Π_{1}^{0} describes all problems that can be phrased as $\{y \mid \forall x \in \mathbb{N} . R(x, y)\}$, where R is a decidable predicate. We can replace the \mathbb{N} with any c.e. set (i.e. type 0).

Pis

Pi

The set Π_{1}^{0} describes all problems that can be phrased as $\{y \mid \forall x \in \mathbb{N} . R(x, y)\}$, where R is a decidable predicate. We can replace the \mathbb{N} with any c.e. set (i.e. type 0).

$$
\begin{aligned}
\overline{\Sigma_{1}^{0}} & =\overline{\{x \mid \exists y \cdot R(x, y)\}} \\
& =\{x \mid \neg \exists y \cdot R(x, y)\} \\
& =\{x \mid \forall y \cdot \neg R(x, y)\} \\
& =\Pi_{1}^{0}
\end{aligned}
$$

Pis

Pi

The set Π_{1}^{0} describes all problems that can be phrased as $\{y \mid \forall x \in \mathbb{N} . R(x, y)\}$, where R is a decidable predicate. We can replace the \mathbb{N} with any c.e. set (i.e. type 0).

$$
\begin{aligned}
\overline{\Sigma_{1}^{0}} & =\overline{\{x \mid \exists y \cdot R(x, y)\}} \\
& =\{x \mid \neg \exists y \cdot R(x, y)\} \\
& =\{x \mid \forall y \cdot \neg R(x, y)\} \\
& =\Pi_{1}^{0}
\end{aligned}
$$

As Σ_{1}^{0} is the set of semidecidable problems, Π_{1}^{0} is the set of co-semidecidable problems.

Pis

Pi

The set Π_{1}^{0} describes all problems that can be phrased as $\{y \mid \forall x \in \mathbb{N} . R(x, y)\}$, where R is a decidable predicate. We can replace the \mathbb{N} with any c.e. set (i.e. type 0).

$$
\begin{aligned}
\overline{\Sigma_{1}^{0}} & =\overline{\{x \mid \exists y \cdot R(x, y)\}} \\
& =\{x \mid \neg \exists y \cdot R(x, y)\} \\
& =\{x \mid \forall y \cdot \neg R(x, y)\} \\
& =\Pi_{1}^{0}
\end{aligned}
$$

As Σ_{1}^{0} is the set of semidecidable problems, Π_{1}^{0} is the set of co-semidecidable problems.

Example (Empty)

Empty $=\{\ulcorner M\urcorner \mid \forall x . \forall y . \neg \mathcal{T}(\ulcorner M\urcorner, x, y)\}$ has two quantifiers. \Rightarrow Use pairing.

Deltas

Delta

The set Δ_{1}^{0} describes the intersection of Σ_{1}^{0} and Π_{1}^{0}.
From our characterisations of Σ_{1}^{0} and Π_{1}^{0}, we know this describes the set of decidable problems.

Relabeling

Moving Higher

Definitions

$\square \Sigma_{2}^{0}$ is the set of all problems of form $\{x \mid \exists y . \forall z . R(x, y, z)\}$.
$\square \Pi_{2}^{0}$ is the set of all problems of form $\{x \mid \forall y \cdot \exists z . R(x, y, z)\}$.

- $\Delta_{2}^{0}=\Sigma_{2}^{0} \cap \Pi_{2}^{0}$

Moving Higher

Definitions

$\square \Sigma_{2}^{0}$ is the set of all problems of form $\{x \mid \exists y . \forall z . R(x, y, z)\}$.
$\square \Pi_{2}^{0}$ is the set of all problems of form $\{x \mid \forall y \cdot \exists z . R(x, y, z)\}$.

- $\Delta_{2}^{0}=\Sigma_{2}^{0} \cap \Pi_{2}^{0}$

Note that $\Sigma_{1}^{0}, \Pi_{1}^{0}, \Delta_{1}^{0}$ are all $\subseteq \Delta_{2}^{0}$ (and therefore $\subseteq \Sigma_{2}^{0}$ and $\subseteq \Pi_{2}^{0}$). Why?

Moving Higher

Definitions

$\square \Sigma_{2}^{0}$ is the set of all problems of form $\{x \mid \exists y . \forall z . R(x, y, z)\}$.
$\square \Pi_{2}^{0}$ is the set of all problems of form $\{x \mid \forall y \cdot \exists z . R(x, y, z)\}$.

- $\Delta_{2}^{0}=\Sigma_{2}^{0} \cap \Pi_{2}^{0}$

Note that $\Sigma_{1}^{0}, \Pi_{1}^{0}, \Delta_{1}^{0}$ are all $\subseteq \Delta_{2}^{0}$ (and therefore $\subseteq \Sigma_{2}^{0}$ and $\subseteq \Pi_{2}^{0}$). Why?
(our R can simply "ignore" one of the parameters)

Moving Higher

Definitions

$\square \Sigma_{2}^{0}$ is the set of all problems of form $\{x \mid \exists y . \forall z . R(x, y, z)\}$.
$\square \Pi_{2}^{0}$ is the set of all problems of form $\{x \mid \forall y \cdot \exists z . R(x, y, z)\}$.

- $\Delta_{2}^{0}=\Sigma_{2}^{0} \cap \Pi_{2}^{0}$

Note that $\Sigma_{1}^{0}, \Pi_{1}^{0}, \Delta_{1}^{0}$ are all $\subseteq \Delta_{2}^{0}$ (and therefore $\subseteq \Sigma_{2}^{0}$ and $\subseteq \Pi_{2}^{0}$). Why?
(our R can simply "ignore" one of the parameters)

Example (Uniform Halting)

$U H$ can be expressed as $\{\ulcorner M\urcorner \mid \forall w . \exists t . T(M, w, t)\}$.
Therefore $U H \in \Pi_{2}^{0}$.

The Arithmetical Hierarchy

An equivalent characterisation

We can define in terms of oracles:

- Δ_{2}^{0} is all problems that are decidable by some TM/RM with an oracle for some (co-)semi-decidable problem.
- Σ_{2}^{0} are all semidecidable problems by such a TM/RM.
- Π_{2}^{0} are all co-semidecidable problems by such a TM/RM.

Building up

In general, for any $n>1$:

- Δ_{n}^{0} is all problems that are decidable by some TM/RM with an oracle for some problem $\in \Sigma_{n-1}^{0}$.
$\square \Sigma_{n}^{0}$ are all semidecidable problems by such a TM/RM.
■ Π_{n}^{0} are all co-semidecidable problems by such a TM/RM.

Building up

In general, for any $n>1$:

- Δ_{n}^{0} is all problems that are decidable by some TM/RM with an oracle for some problem $\in \Sigma_{n-1}^{0}$.
■ Σ_{n}^{0} are all semidecidable problems by such a TM/RM.
■ Π_{n}^{0} are all co-semidecidable problems by such a TM/RM.

Alternation

Equivalently Σ_{n}^{0} are all problems that can be phrased as some alternation of quantifiers, starting with \exists :

$$
\left\{w \mid \exists x_{1} \cdot \forall x_{2} \cdot \exists x_{3} \cdot \forall x_{4} \ldots x_{n} \cdot R\left(w, x_{1}, \ldots, x_{n}\right)\right\}
$$

Π_{n}^{0} starts instead with \forall :

$$
\left\{w \mid \forall x_{1} \cdot \exists x_{2} \cdot \forall x_{3} \cdot \exists x_{4} \ldots x_{n} \cdot R\left(w, x_{1}, \ldots, x_{n}\right)\right\}
$$

Games

Alternation of formulae are connected fundamentally with games. When proving an $\exists x . .$. , we have a choice of what x is. When proving a $\forall x \ldots$, our opponent has a choice of what x is.

Games

Alternation of formulae are connected fundamentally with games. When proving an $\exists x . \ldots$, we have a choice of what x is. When proving a $\forall x \ldots$, our opponent has a choice of what x is.

Example (Pumping for CFLs)

If L is a CFL then:
$\forall p . \exists w . \forall u v x y z . \forall i .|w| \geq p \wedge|v x y|<p \wedge v y \neq \varepsilon \wedge u v^{i} x y^{i} z \in L$ Thus finding a proof via pumping that L is not a CFL is $\in \Sigma_{3}^{0}$.

Limitations of Oracles

Theorem

The arithmetic hierarchy is strict. That is, the nth level contains a language not in any level below n.

Limitations of Oracles

Theorem

The arithmetic hierarchy is strict. That is, the nth level contains a language not in any level below n.

Note: H is in level 1 but not 0 . Consider:

$$
\begin{aligned}
& H_{2}=\{\langle\ulcorner M\urcorner, x\rangle \mid M \text {, a machine with oracle for } H \text {, halts on } x\} \\
& H_{3}=\left\{\langle\ulcorner M\urcorner, x\rangle \mid M \text {, a machine with oracle for } H_{2} \text {, halts on } x\right\} \\
& \ldots \\
& H_{n}=\left\{\langle\ulcorner M\urcorner, x\rangle \mid M \text {, a machine with oracle for } H_{n-1} \text {, halts on } x\right\}
\end{aligned}
$$

Each of these H_{k}-oracle machines cannot decide H_{k} or higher. And, $H_{k} \in \Sigma_{k}^{0}$.

Conclusions

This concludes our study of computability theory. Next week, we'll start on complexity theory. If there's time, I'll talk about some other interesting topics. Ask me things!

