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What we have so far

semidecidable H co-semidecidableL

decidable

UH?
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Sigmas

We shall introduce notation to describe decision problems.

Sigma
The set Σ0

1 describes all problems that can be phrased as
{y | ∃x ∈ N. R(x , y)}, where R is a decidable predicate.
We can replace the N with any c.e. set (i.e. type 0).

If a problem P ∈ Σ0
1 then P is semidecidable. Why?

(we can enumerate all x and test R(x , y), halting if true)
If a problem P is semidecidable then P ∈ Σ0

1. Why?

Definition: Kleene’s T Predicate
T (⌜M⌝, x , y) = M accepts x in y steps.

If a machine M semi-decides P , then P = {x | ∃y .T (⌜M⌝, x , y)}
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Pis

Pi
The set Π0

1 describes all problems that can be phrased as
{y | ∀x ∈ N. R(x , y)}, where R is a decidable predicate.
We can replace the N with any c.e. set (i.e. type 0).

Σ0
1 = {x | ∃y . R(x , y)}

= {x | ¬∃y . R(x , y)}
= {x | ∀y . ¬R(x , y)}
= Π0

1

As Σ0
1 is the set of semidecidable problems, Π0

1 is the set of
co-semidecidable problems.

Example (Empty)
Empty = {⌜M⌝ | ∀x .∀y . ¬T (⌜M⌝, x , y)} has two quantifiers.
⇒ Use pairing.
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Deltas

Delta
The set ∆0

1 describes the intersection of Σ0
1 and Π0

1.

From our characterisations of Σ0
1 and Π0

1, we know this
describes the set of decidable problems.
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Relabeling

Σ0
1 Π0

1

∆0
1

H L
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Moving Higher

Definitions

Σ0
2 is the set of all problems of form {x | ∃y .∀z . R(x , y , z)}.

Π0
2 is the set of all problems of form {x | ∀y .∃z . R(x , y , z)}.

∆0
2 = Σ0

2 ∩ Π0
2

Note that Σ0
1,Π0

1,∆0
1 are all ⊆ ∆0

2 (and therefore ⊆ Σ0
2 and ⊆ Π0

2).
Why?
(our R can simply “ignore” one of the parameters)

Example (Uniform Halting)
UH can be expressed as {⌜M⌝ | ∀w . ∃t.T (M,w , t)}.
Therefore UH ∈ Π0

2.
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The Arithmetical Hierarchy

∆0
1

Σ0
1 Π0

1

∆0
2

Σ0
2 Π0

2

An equivalent characterisation
We can define in terms of oracles:

∆0
2 is all problems that are

decidable by some TM/RM with
an oracle for some
(co-)semi-decidable problem.
Σ0

2 are all semidecidable
problems by such a TM/RM.
Π0

2 are all co-semidecidable
problems by such a TM/RM.
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Building up
In general, for any n > 1:

∆0
n is all problems that are decidable by some TM/RM with

an oracle for some problem ∈ Σ0
n−1.

Σ0
n are all semidecidable problems by such a TM/RM.

Π0
n are all co-semidecidable problems by such a TM/RM.

Alternation
Equivalently Σ0

n are all problems that can be phrased as some
alternation of quantifiers, starting with ∃:

{w | ∃x1.∀x2.∃x3.∀x4. . . . xn. R(w , x1, . . . , xn)}

Π0
n starts instead with ∀:

{w | ∀x1.∃x2.∀x3.∃x4. . . . xn. R(w , x1, . . . , xn)}
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Games

Alternation of formulae are connected fundamentally with
games. When proving an ∃x . . . . , we have a choice of what x is.
When proving a ∀x . . . . , our opponent has a choice of what x is.

Example (Pumping for CFLs)
If L is a CFL then:
∀p.∃w .∀uvxyz .∀i .|w | ≥ p ∧ |vxy | < p ∧ vy ̸= ε ∧ uv ixy iz ∈ L Thus
finding a proof via pumping that L is not a CFL is ∈ Σ0

3.
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Limitations of Oracles

Theorem
The arithmetic hierarchy is strict. That is, the nth level contains
a language not in any level below n.

Note: H is in level 1 but not 0. Consider:

H2 = {⟨⌜M⌝, x⟩ | M, a machine with oracle for H, halts on x}
H3 = {⟨⌜M⌝, x⟩ | M, a machine with oracle for H2, halts on x}
. . .
Hn = {⟨⌜M⌝, x⟩ | M, a machine with oracle for Hn−1, halts on x}

Each of these Hk-oracle machines cannot decide Hk or higher.
And, Hk ∈ Σ0

k .
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Conclusions

This concludes our study of computability theory. Next week,
we’ll start on complexity theory.
If there’s time, I’ll talk about some other interesting topics.
Ask me things!
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