Introduction to Theoretical Computer Science

Lecture 8: Semi-decidability

Dr. Liam O'Connor

University of Edinburgh Semester 1, 2023/2024

A Review of Halting

The halting problem *H* is not symmetric:

if $M \in H$ we can determine this: run M—if it halts say "yes"

A Review of Halting

The halting problem *H* is not symmetric:

- if $M \in H$ we can determine this: run M—if it halts say "yes"
- if $M \notin H$ we can't determine this by running *M*—it will run forever.

A Review of Halting

The halting problem *H* is not symmetric:

- if $M \in H$ we can determine this: run M—if it halts say "yes"
- if $M \notin H$ we can't determine this by running *M*—it will run forever.

Definition

A problem (D, Q) is *semi-decidable* if there is a TM/RM that returns "yes" for any $d \in Q$, but may return "no" or loop forever when $d \notin Q$.

Semi-decidable problems are sometimes called *recognisable*.

A Review of Looping

The looping problem *L* is not symmetric:

if $M \notin L$ we can determine this: run M—if it halts say "no"

A Review of Looping

The looping problem *L* is not symmetric:

- if $M \notin L$ we can determine this: run M—if it halts say "no"
- if $M \in L$ we can't determine this by running *M*—it will run forever.

A Review of Looping

The looping problem *L* is not symmetric:

- if $M \notin L$ we can determine this: run *M*—if it halts say "no"
- if $M \in L$ we can't determine this by running M—it will run forever.

Definition

A problem (D, Q) is *co-semi-decidable* if there is a TM/RM that returns "no" for any $d \notin Q$, but may return "yes" or loop forever when $d \in Q$.

A Review of Looping

The looping problem *L* is not symmetric:

- if $M \notin L$ we can determine this: run *M*—if it halts say "no"
- if $M \in L$ we can't determine this by running M—it will run forever.

Definition

A problem (D, Q) is *co-semi-decidable* if there is a TM/RM that returns "no" for any $d \notin Q$, but may return "yes" or loop forever when $d \in Q$.

Theorem

Any problem that is both semi-decidable and co-semi-decidable is decidable. Why?

A Review of Looping

The looping problem *L* is not symmetric:

- if $M \notin L$ we can determine this: run *M*—if it halts say "no"
- if $M \in L$ we can't determine this by running M—it will run forever.

Definition

A problem (D, Q) is *co-semi-decidable* if there is a TM/RM that returns "no" for any $d \notin Q$, but may return "yes" or loop forever when $d \in Q$.

Theorem

Any problem that is both semi-decidable and co-semi-decidable is decidable. Why? ∴ *L* cannot be semi-decidable. Why?

Unrecognisable languages

We have seen that *H* and *L* are semi-decidable and co-semi-decidable respectively.

Unrecognisable languages

We have seen that *H* and *L* are semi-decidable and co-semi-decidable respectively.

Theorem

If a problem P is semi-decidable then its complement \overline{P} is co-semi-decidable, and vice versa.

Unrecognisable languages

We have seen that *H* and *L* are semi-decidable and co-semi-decidable respectively.

Theorem

If a problem P is semi-decidable then its complement \overline{P} is co-semi-decidable, and vice versa.

Question

Are there any problems that are neither semi-decidable nor co-semi-decidable?

Unrecognisable languages

We have seen that *H* and *L* are semi-decidable and co-semi-decidable respectively.

Theorem

If a problem P is semi-decidable then its complement \overline{P} is co-semi-decidable, and vice versa.

Question

Are there any problems that are neither semi-decidable nor co-semi-decidable?

Yes, by the counting argument from last lecture.

Recall

A set *S* is *enumerable* if there is a bijection between *S* and \mathbb{N} .

¹Sometimes called *recursively enumerable* or r.e.

Recall

A set *S* is *enumerable* if there is a bijection between *S* and \mathbb{N} .

A set *S* is called *computably enumerable* (or c.e.)¹ if the enumeration function $f : \mathbb{N} \to S$ is computable.

¹Sometimes called *recursively enumerable* or r.e.

Recall

A set *S* is *enumerable* if there is a bijection between *S* and \mathbb{N} .

A set *S* is called *computably enumerable* (or c.e.)¹ if the enumeration function $f : \mathbb{N} \to S$ is computable.

Example

We can think of an enumerating RM/TM as outputting an "infinite list" as it executes forever.

¹Sometimes called *recursively enumerable* or r.e.

Recall

A set *S* is *enumerable* if there is a bijection between *S* and \mathbb{N} .

A set *S* is called *computably enumerable* (or c.e.)¹ if the enumeration function $f : \mathbb{N} \to S$ is computable.

Example

We can think of an enumerating RM/TM as outputting an "infinite list" as it executes forever.

Question: *H* is not decidable. But can we enumerate it?

¹Sometimes called *recursively enumerable* or r.e.

Observe that the set of valid RM descriptions is decidable: Given $n \in \mathbb{N}$, we can check whether $n = \lceil M \rceil$ for some machine M.

Observe that the set of valid RM descriptions is decidable: Given $n \in \mathbb{N}$, we can check whether $n = \lceil M \rceil$ for some machine M.

Therefore, we can enumerate all machines $\lceil M_0 \rceil, \lceil M_1 \rceil, \ldots$.

Observe that the set of valid RM descriptions is decidable: Given $n \in \mathbb{N}$, we can check whether $n = \lceil M \rceil$ for some machine M.

Therefore, we can enumerate all machines $\lceil M_0 \rceil, \lceil M_1 \rceil, \ldots$.

Interleaving

Interleaving shows that *H* is computably enumerable.

Interleaving shows that *H* is computably enumerable.

Theorem

Any semi-decidable problem *P* is computably enumerable. **Why?**

Interleaving shows that *H* is computably enumerable.

Theorem

Any semi-decidable problem *P* is computably enumerable. **Why?**

Any computably-enumerable problem *P* is semi-decidable. **Why?**

Interleaving shows that *H* is computably enumerable.

Theorem

Any semi-decidable problem *P* is computably enumerable. **Why?**

Any computably-enumerable problem *P* is semi-decidable. **Why?**

Therefore, semidecidability is the same as c.e.-ness.

Recall:

To prove that a problem P_2 is *hard*, show that there is an *easy* reduction from a known hard problem P_1 to P_2 .

Recall:

To prove that a problem P_2 is *hard*, show that there is an *easy* reduction from a known hard problem P_1 to P_2 .

Theorem

To prove that a problem P_2 is not c.e., show that there is a mapping reduction from a known not-c.e. problem P_1 to P_2 .

Recall:

To prove that a problem P_2 is *hard*, show that there is an *easy* reduction from a known hard problem P_1 to P_2 .

Theorem

To prove that a problem P_2 is not c.e., show that there is a mapping reduction from a known not-c.e. problem P_1 to P_2 .

Note we must use mapping reductions, not Turing reductions. Why?

Recall:

To prove that a problem P_2 is *hard*, show that there is an *easy* reduction from a known hard problem P_1 to P_2 .

Theorem

To prove that a problem P_2 is not c.e., show that there is a mapping reduction from a known not-c.e. problem P_1 to P_2 .

Note we must use mapping reductions, not Turing reductions. Why? *H* is c.e. but its complement *L* is not. But *H* is Turing-reducible to *L* and *L* is Turing-reducible to *H* by flipping the answers.

Recall that Uniform Halting is the undecidable problem that contains all RM/TMs that halt on all inputs.

- Recall that Uniform Halting is the undecidable problem that contains all RM/TMs that halt on all inputs.
- We have a mapping reduction from *H* to *UH* (last lecture), so we know that *UH* is not co-semi-decidable. **Why?**

- Recall that Uniform Halting is the undecidable problem that contains all RM/TMs that halt on all inputs.
- We have a mapping reduction from *H* to *UH* (last lecture), so we know that *UH* is not co-semi-decidable. **Why?**
- We also have a mapping reduction from L to UH, in the next slide.

- Recall that Uniform Halting is the undecidable problem that contains all RM/TMs that halt on all inputs.
- We have a mapping reduction from *H* to *UH* (last lecture), so we know that *UH* is not co-semi-decidable. **Why?**
- We also have a mapping reduction from L to UH, in the next slide.

Conclusion

UH is neither semi-decidable nor co-semi-decidable.

We showed that such problems must exist earlier by counting.

We want a transducer $f : RM \times \text{Input} \to RM$ such that f(M, i) halts on all inputs iff M loops on i. As with H to UH, we can make a machine that replaces any input with i and then runs M, but how do we make it stop?

We want a transducer $f : RM \times \text{Input} \to RM$ such that f(M, i) halts on all inputs iff M loops on i. As with H to UH, we can make a machine that replaces any input with i and then runs M, but how do we make it stop?

Solution

Our machine will measure how long *M* runs for, with a timeout as its input.

We want a transducer $f : RM \times \text{Input} \to RM$ such that f(M, i) halts on all inputs iff M loops on i. As with H to UH, we can make a machine that replaces any input with i and then runs M, but how do we make it stop?

Solution

Our machine will measure how long M runs for, with a timeout as its input.

■ f(M, i) will take a number n as input, and run M on i for at most n steps.

We want a transducer $f : RM \times \text{Input} \to RM$ such that f(M, i) halts on all inputs iff M loops on i. As with H to UH, we can make a machine that replaces any input with i and then runs M, but how do we make it stop?

Solution

Our machine will measure how long M runs for, with a timeout as its input.

- f(M, i) will take a number n as input, and run M on i for at most n steps.
- If *M* halts on *i* before *n* steps, f(M, i) goes into a loop.

We want a transducer $f : RM \times \text{Input} \to RM$ such that f(M, i) halts on all inputs iff M loops on i. As with H to UH, we can make a machine that replaces any input with i and then runs M, but how do we make it stop?

Solution

Our machine will measure how long *M* runs for, with a timeout as its input.

- f(M, i) will take a number n as input, and run M on i for at most n steps.
- If M halts on i before n steps, f(M, i) goes into a loop.
- If *M* goes *n* steps without halting, our f(M, i) just halts.

We want a transducer $f : RM \times \text{Input} \to RM$ such that f(M, i) halts on all inputs iff M loops on i. As with H to UH, we can make a machine that replaces any input with i and then runs M, but how do we make it stop?

Solution

Our machine will measure how long *M* runs for, with a timeout as its input.

- f(M, i) will take a number n as input, and run M on i for at most n steps.
- If *M* halts on *i* before *n* steps, f(M, i) goes into a loop.

If *M* goes *n* steps without halting, our f(M, i) just halts. If *M* loops on *i*, then f(M, i) will halt on all inputs *n*, and if *M* halts, then f(M, i) loops on some sufficiently large *n*.

Next topics

Next week is a "low-pressure" week. We will only have one lecture, which slightly extends the theory presented here to present the fascinating arithmetic hierarchy. It's not officially part of the syllabus of this course, but a related concept, the polynomial hierarchy is, and so I highly recommend learning it anyway.

There is no lecture on Thursday.