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(co)-Semi-decidability Enumeration

A Review of Halting

The halting problem H is not symmetric:
if M ∈ H we can determine this: run M—if it halts say “yes”

if M /∈ H we can’t determine this by running M—it will run
forever.

Definition
A problem (D,Q) is semi-decidable if there is a TM/RM that
returns “yes” for any d ∈ Q, but may return “no” or loop
forever when d /∈ Q.

Semi-decidable problems are sometimes called recognisable.
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A Review of Looping

The looping problem L is not symmetric:
if M /∈ L we can determine this: run M—if it halts say “no”

if M ∈ L we can’t determine this by running M—it will run
forever.

Definition
A problem (D,Q) is co-semi-decidable if there is a TM/RM that
returns “no” for any d /∈ Q, but may return “yes” or loop
forever when d ∈ Q.

Theorem
Any problem that is both semi-decidable and
co-semi-decidable is decidable. Why?
∴ L cannot be semi-decidable. Why?



(co)-Semi-decidability Enumeration

A Review of Looping

The looping problem L is not symmetric:
if M /∈ L we can determine this: run M—if it halts say “no”
if M ∈ L we can’t determine this by running M—it will run
forever.

Definition
A problem (D,Q) is co-semi-decidable if there is a TM/RM that
returns “no” for any d /∈ Q, but may return “yes” or loop
forever when d ∈ Q.

Theorem
Any problem that is both semi-decidable and
co-semi-decidable is decidable. Why?
∴ L cannot be semi-decidable. Why?



(co)-Semi-decidability Enumeration

A Review of Looping

The looping problem L is not symmetric:
if M /∈ L we can determine this: run M—if it halts say “no”
if M ∈ L we can’t determine this by running M—it will run
forever.

Definition
A problem (D,Q) is co-semi-decidable if there is a TM/RM that
returns “no” for any d /∈ Q, but may return “yes” or loop
forever when d ∈ Q.

Theorem
Any problem that is both semi-decidable and
co-semi-decidable is decidable. Why?
∴ L cannot be semi-decidable. Why?



(co)-Semi-decidability Enumeration

A Review of Looping

The looping problem L is not symmetric:
if M /∈ L we can determine this: run M—if it halts say “no”
if M ∈ L we can’t determine this by running M—it will run
forever.

Definition
A problem (D,Q) is co-semi-decidable if there is a TM/RM that
returns “no” for any d /∈ Q, but may return “yes” or loop
forever when d ∈ Q.

Theorem
Any problem that is both semi-decidable and
co-semi-decidable is decidable. Why?

∴ L cannot be semi-decidable. Why?



(co)-Semi-decidability Enumeration

A Review of Looping

The looping problem L is not symmetric:
if M /∈ L we can determine this: run M—if it halts say “no”
if M ∈ L we can’t determine this by running M—it will run
forever.

Definition
A problem (D,Q) is co-semi-decidable if there is a TM/RM that
returns “no” for any d /∈ Q, but may return “yes” or loop
forever when d ∈ Q.

Theorem
Any problem that is both semi-decidable and
co-semi-decidable is decidable. Why?
∴ L cannot be semi-decidable. Why?



(co)-Semi-decidability Enumeration

Unrecognisable languages

We have seen that H and L are semi-decidable and
co-semi-decidable respectively.

Theorem
If a problem P is semi-decidable then its complement P is
co-semi-decidable, and vice versa.

Question
Are there any problems that are neither semi-decidable nor
co-semi-decidable?

Yes, by the counting argument from last lecture.
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Enumeration

Recall
A set S is enumerable if there is a bijection between S and N.

A set S is called computably enumerable (or c.e.)1 if the
enumeration function f : N → S is computable.

Example
We can think of an enumerating RM/TM as outputting an
“infinite list” as it executes forever.

Question: H is not decidable. But can we enumerate it?

1Sometimes called recursively enumerable or r.e.
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Interleaving
Observe that the set of valid RM descriptions is decidable:
Given n ∈ N, we can check whether n = ⌜M⌝ for some machine
M.

Therefore, we can enumerate all machines ⌜M0⌝, ⌜M1⌝, . . . .

Interleaving
ms := ⟨⟩; i := 0
while true do

ms := ms ++ ⟨⌜Mi⌝⟩
for ⌜M⌝ ∈ ms do

run M for one step and update ms
if M has halted :

output ⌜M⌝;delete M from ms
od
i := i + 1

od
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Interleaving

Interleaving shows that H is computably enumerable.

Theorem
Any semi-decidable problem P is computably enumerable.
Why?

Any computably-enumerable problem P is semi-decidable.
Why?

Therefore, semidecidability is the same as c.e.-ness.
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Reductions and c.e

Recall:
To prove that a problem P2 is hard, show that there is an easy
reduction from a known hard problem P1 to P2.

Theorem
To prove that a problem P2 is not c.e., show that there is a
mapping reduction from a known not-c.e. problem P1 to P2.

Note we must use mapping reductions, not Turing reductions.
Why?
H is c.e. but its complement L is not. But H is Turing-reducible
to L and L is Turing-reducible to H by flipping the answers.
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Returning to UH

Recall that Uniform Halting is the undecidable problem
that contains all RM/TMs that halt on all inputs.

We have a mapping reduction from H to UH (last lecture),
so we know that UH is not co-semi-decidable. Why?
We also have a mapping reduction from L to UH, in the
next slide.

Conclusion
UH is neither semi-decidable nor co-semi-decidable.

We showed that such problems must exist earlier by counting.
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L to UH

We want a transducer f : RM × Input → RM such that f (M, i)
halts on all inputs iff M loops on i .
As with H to UH, we can make a machine that replaces any
input with i and then runs M, but how do we make it stop?

Solution
Our machine will measure how long M runs for, with a timeout
as its input.

f (M, i) will take a number n as input, and run M on i for at
most n steps.
If M halts on i before n steps, f (M, i) goes into a loop.
If M goes n steps without halting, our f (M, i) just halts.

If M loops on i , then f (M, i) will halt on all inputs n, and if M
halts, then f (M, i) loops on some sufficiently large n.
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Next topics

Next week is a “low-pressure” week. We will only have one
lecture, which slightly extends the theory presented here to
present the fascinating arithmetic hierarchy. It’s not officially
part of the syllabus of this course, but a related concept, the
polynomial hierarchy is, and so I highly recommend learning it
anyway.
There is no lecture on Thursday.
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