
Introduction to Theoretical Computer
Science

Lecture 7: Undecidability

Dr. Liam O’Connor
University of Edinburgh
Semester 1, 2023/2024



Computable Functions Reductions Oracles Rice’s Theorem

Computable Functions

Definitions
A (total) function N → N is computable1 if there is an RM/TM
which computes f , i.e., given an x in R0, leaves f (x) in R0.

A decision problem is a set D and a query subset Q ⊆ D. A
problem is decidable or computable if d ∈ Q is characterised
by a computable function f : D → {0, 1}.

Note that our language problems, for DFAs and CFGs etc., are
decision problems where D = Σ∗ and Q is the language in
question.
Also, consider D = N and Q = Primes.
Or D = RMs and Q = the halting RMs.

1sometimes confusingly called recursive, but this is old terminology.



Computable Functions Reductions Oracles Rice’s Theorem

Computable Functions

Definitions
A (total) function N → N is computable1 if there is an RM/TM
which computes f , i.e., given an x in R0, leaves f (x) in R0.

A decision problem is a set D and a query subset Q ⊆ D. A
problem is decidable or computable if d ∈ Q is characterised
by a computable function f : D → {0, 1}.

Note that our language problems, for DFAs and CFGs etc., are
decision problems where D = Σ∗ and Q is the language in
question.
Also, consider D = N and Q = Primes.
Or D = RMs and Q = the halting RMs.

1sometimes confusingly called recursive, but this is old terminology.



Computable Functions Reductions Oracles Rice’s Theorem

Closure Properties

Are the decidable languages closed under:
Union?
Intersection?
Complement?

(yes)



Computable Functions Reductions Oracles Rice’s Theorem

Closure Properties

Are the decidable languages closed under:
Union?
Intersection?
Complement?

(yes)



Computable Functions Reductions Oracles Rice’s Theorem

Undecidability

We know that undecidable problems exist, like H.

Another Example
ARM = {⟨⌜M⌝,w⟩ | M accepts w}
The proof, in Sipser for TMs, is analogous to our proof for H.

Aside
We can also use a counting argument. The set of RMs is
enumerable, but the set of languages is uncountable. So there
are languages that are not decided (or even recognised) by any
RM.

How would we show that other problems are undecidable?



Computable Functions Reductions Oracles Rice’s Theorem

Undecidability

We know that undecidable problems exist, like H.

Another Example
ARM = {⟨⌜M⌝,w⟩ | M accepts w}
The proof, in Sipser for TMs, is analogous to our proof for H.

Aside
We can also use a counting argument. The set of RMs is
enumerable, but the set of languages is uncountable. So there
are languages that are not decided (or even recognised) by any
RM.

How would we show that other problems are undecidable?



Computable Functions Reductions Oracles Rice’s Theorem

Reductions

A reduction is a transformation from one problem to another.

To prove that a problem P2 is hard, show that there is an easy
reduction from a known hard problem P1 to P2.

Therefore
To prove that a problem P2 is undecidable, show that there is a
computable reduction from a known undecidable P1 to P2.

Pay close attention to the direction of the proof!



Computable Functions Reductions Oracles Rice’s Theorem

A correct example

Suppose it is well known that Hyunwoo cannot lift a car.

Theorem
Hyunwoo cannot lift a loaded truck.

Proof
By reduction from the car-lifting problem (P1). Suppose
Hyunwoo could lift a loaded truck. Then, he could lift a car by
putting the car in the truck and then lifting the truck.
But, it is known that Hyunwoo cannot lift a car.

Known Hard Problem −→ New Problem



Computable Functions Reductions Oracles Rice’s Theorem

A correct example

Suppose it is well known that Hyunwoo cannot lift a car.

Theorem
Hyunwoo cannot lift a loaded truck.

Proof
By reduction from the car-lifting problem (P1). Suppose
Hyunwoo could lift a loaded truck. Then, he could lift a car by
putting the car in the truck and then lifting the truck.
But, it is known that Hyunwoo cannot lift a car.

Known Hard Problem −→ New Problem



Computable Functions Reductions Oracles Rice’s Theorem

An incorrect example

Suppose it is well known that Hyunwoo cannot lift a car.

Theorem
Hyunwoo cannot lift a feather.

Proof
By reduction to the car-lifting problem. We can reduce the
feather-lifting problem to the car-lifting problem by putting the
feather in the car.
It is known that Hyunwoo cannot lift a car. Therefore, Hyunwoo
cannot lift a feather (???!).



Computable Functions Reductions Oracles Rice’s Theorem

An incorrect example

Suppose it is well known that Hyunwoo cannot lift a car.

Theorem
Hyunwoo cannot lift a feather.

Proof
By reduction to the car-lifting problem. We can reduce the
feather-lifting problem to the car-lifting problem by putting the
feather in the car.
It is known that Hyunwoo cannot lift a car. Therefore, Hyunwoo
cannot lift a feather (???!).



Computable Functions Reductions Oracles Rice’s Theorem

Reductions

A Turing Transducer is a RM (or TM) which takes an instance d
of a problem P1 = (D1,Q1) in R0 and halts with an instance
d ′ = f (d) of P2 = (D2,Q2) in R0. Thus, f is a computable
function D1 → D2.

Definition
A mapping reduction (or many-one reduction) from P1 to P2 is
a Turing transducer f as above such that d ∈ Q1 iff f (d) ∈ Q2

If A is mapping reducible to B , and A is undecidable, then B is
undecidable.



Computable Functions Reductions Oracles Rice’s Theorem

Reductions

A Turing Transducer is a RM (or TM) which takes an instance d
of a problem P1 = (D1,Q1) in R0 and halts with an instance
d ′ = f (d) of P2 = (D2,Q2) in R0. Thus, f is a computable
function D1 → D2.

Definition
A mapping reduction (or many-one reduction) from P1 to P2 is
a Turing transducer f as above such that d ∈ Q1 iff f (d) ∈ Q2

If A is mapping reducible to B , and A is undecidable, then B is
undecidable.



Computable Functions Reductions Oracles Rice’s Theorem

Example

NotEmptyTM = {⌜M⌝ | L(M) ̸= ∅}

Example (Proof)
We sketch a mapping reduction from ATM to NotEmptyTM.
Given an instance ⟨M,w⟩ of ATM, our reduction constructs a
machine M ′ whose language is either {w} or ∅. Given input x , it
will reject if x ̸= w , else run M on w .

Note that ⟨M,w⟩ ∈ ATM iff M ′ ∈ NotEmptyTM.

Thus, if we could solve NotEmptyTM we could solve ATM, which
we know is undecidable. Thus NotEmptyTM too is undecidable.



Computable Functions Reductions Oracles Rice’s Theorem

Uniform Halting

UH = {⌜M⌝ | M halts on all inputs}

Example (Proof)
We reduce from H to UH. Given a machine M and input w , build
a machine M ′ which ignores its input, writes w to the tape, and
then behaves as M. Then M ′ halts on any input iff M halts on w .



Computable Functions Reductions Oracles Rice’s Theorem

The Looping Problem

Let L be the subset of RMs (or TMs) that go into an infinite loop.
Show that L is undecidable.

Since L is the complement of H, this seems easy, but we can’t
fit it neatly into our definition of a mapping reduction.



Computable Functions Reductions Oracles Rice’s Theorem

The Looping Problem

Let L be the subset of RMs (or TMs) that go into an infinite loop.
Show that L is undecidable.

Since L is the complement of H, this seems easy, but we can’t
fit it neatly into our definition of a mapping reduction.



Computable Functions Reductions Oracles Rice’s Theorem

Oracles

Definition
Given a decision problem (D,Q), an oracle for Q is a ‘magic’
RM instruction ORACLEQ(i) which, given an encoding of d ∈ D
in Ri , sets Ri to contain 1 iff d ∈ Q.

Consider RMs augmented with an oracle for halting H,
sometimes written RMH . We’ll return to this.

If a problem P is decidable, is a machine RMP more powerful
than a standard RM?
No. No point in having decidable oracles!



Computable Functions Reductions Oracles Rice’s Theorem

Oracles

Definition
Given a decision problem (D,Q), an oracle for Q is a ‘magic’
RM instruction ORACLEQ(i) which, given an encoding of d ∈ D
in Ri , sets Ri to contain 1 iff d ∈ Q.

Consider RMs augmented with an oracle for halting H,
sometimes written RMH . We’ll return to this.

If a problem P is decidable, is a machine RMP more powerful
than a standard RM?
No. No point in having decidable oracles!



Computable Functions Reductions Oracles Rice’s Theorem

Oracles

Definition
Given a decision problem (D,Q), an oracle for Q is a ‘magic’
RM instruction ORACLEQ(i) which, given an encoding of d ∈ D
in Ri , sets Ri to contain 1 iff d ∈ Q.

Consider RMs augmented with an oracle for halting H,
sometimes written RMH . We’ll return to this.

If a problem P is decidable, is a machine RMP more powerful
than a standard RM?

No. No point in having decidable oracles!



Computable Functions Reductions Oracles Rice’s Theorem

Oracles

Definition
Given a decision problem (D,Q), an oracle for Q is a ‘magic’
RM instruction ORACLEQ(i) which, given an encoding of d ∈ D
in Ri , sets Ri to contain 1 iff d ∈ Q.

Consider RMs augmented with an oracle for halting H,
sometimes written RMH . We’ll return to this.

If a problem P is decidable, is a machine RMP more powerful
than a standard RM?
No. No point in having decidable oracles!



Computable Functions Reductions Oracles Rice’s Theorem

Turing Reductions

Definition
A Turing reduction from P1 to P2 is an RM (or TM) equipped
with an Oracle for P2 that solves P1.

Decidability results carry across Turing reductions just as with
mapping reductions. But mapping reductions make finer
distinctions of computing power.

Observe that H is Turing-reducible to L, and thus L is also
undecidable.



Computable Functions Reductions Oracles Rice’s Theorem

Turing Reductions

Definition
A Turing reduction from P1 to P2 is an RM (or TM) equipped
with an Oracle for P2 that solves P1.

Decidability results carry across Turing reductions just as with
mapping reductions. But mapping reductions make finer
distinctions of computing power.

Observe that H is Turing-reducible to L, and thus L is also
undecidable.



Computable Functions Reductions Oracles Rice’s Theorem

Rice’s Theorem

A property is a set of RM (or TM) descriptions.

A property is nontrivial if it contains some but not all
descriptions.
A property P is semantic if

L(M1) = L(M2) ⇒ (⌜M1⌝ ∈ P ⇔ ⌜M2⌝ ∈ P)

In other words, it concerns the language and not the
particular implementation of the machine.

Rice’s Theorem
All nontrivial semantic properties are undecidable.



Computable Functions Reductions Oracles Rice’s Theorem

Rice’s Theorem

A property is a set of RM (or TM) descriptions.
A property is nontrivial if it contains some but not all
descriptions.

A property P is semantic if

L(M1) = L(M2) ⇒ (⌜M1⌝ ∈ P ⇔ ⌜M2⌝ ∈ P)

In other words, it concerns the language and not the
particular implementation of the machine.

Rice’s Theorem
All nontrivial semantic properties are undecidable.



Computable Functions Reductions Oracles Rice’s Theorem

Rice’s Theorem

A property is a set of RM (or TM) descriptions.
A property is nontrivial if it contains some but not all
descriptions.
A property P is semantic if

L(M1) = L(M2) ⇒ (⌜M1⌝ ∈ P ⇔ ⌜M2⌝ ∈ P)

In other words, it concerns the language and not the
particular implementation of the machine.

Rice’s Theorem
All nontrivial semantic properties are undecidable.



Computable Functions Reductions Oracles Rice’s Theorem

Rice’s Theorem

A property is a set of RM (or TM) descriptions.
A property is nontrivial if it contains some but not all
descriptions.
A property P is semantic if

L(M1) = L(M2) ⇒ (⌜M1⌝ ∈ P ⇔ ⌜M2⌝ ∈ P)

In other words, it concerns the language and not the
particular implementation of the machine.

Rice’s Theorem
All nontrivial semantic properties are undecidable.



Computable Functions Reductions Oracles Rice’s Theorem

Proof

Assume to the contrary that a nontrivial semantic property P is
decidable, and it is decided by an RM MP . W.l.o.g. a RM T∅ that
always rejects is not in P — otherwise we shall proceed with
the complement of P instead.

Let T be a RM with ⌜T⌝ ∈ P . We build an MP oracle-equipped
RM S to decide ARM.
On input ⟨M,w⟩:

1 Build a RM NM,w which on input x , simulates M on w . If M
halts and rejects, it rejects. Otherwise, it simulates T on x ,
and accepts if T accepts.

2 Use MP to answer if ⌜NM,w⌝ ∈ P .
Note the language of NM,w is L(T ) if w is accepted by M and ∅
otherwise.
We know ATM is undecidable, so P must also be undecidable.



Computable Functions Reductions Oracles Rice’s Theorem

Proof

Assume to the contrary that a nontrivial semantic property P is
decidable, and it is decided by an RM MP . W.l.o.g. a RM T∅ that
always rejects is not in P — otherwise we shall proceed with
the complement of P instead.
Let T be a RM with ⌜T⌝ ∈ P . We build an MP oracle-equipped
RM S to decide ARM.

On input ⟨M,w⟩:
1 Build a RM NM,w which on input x , simulates M on w . If M

halts and rejects, it rejects. Otherwise, it simulates T on x ,
and accepts if T accepts.

2 Use MP to answer if ⌜NM,w⌝ ∈ P .
Note the language of NM,w is L(T ) if w is accepted by M and ∅
otherwise.
We know ATM is undecidable, so P must also be undecidable.



Computable Functions Reductions Oracles Rice’s Theorem

Proof

Assume to the contrary that a nontrivial semantic property P is
decidable, and it is decided by an RM MP . W.l.o.g. a RM T∅ that
always rejects is not in P — otherwise we shall proceed with
the complement of P instead.
Let T be a RM with ⌜T⌝ ∈ P . We build an MP oracle-equipped
RM S to decide ARM.
On input ⟨M,w⟩:

1 Build a RM NM,w which on input x , simulates M on w . If M
halts and rejects, it rejects. Otherwise, it simulates T on x ,
and accepts if T accepts.

2 Use MP to answer if ⌜NM,w⌝ ∈ P .

Note the language of NM,w is L(T ) if w is accepted by M and ∅
otherwise.
We know ATM is undecidable, so P must also be undecidable.



Computable Functions Reductions Oracles Rice’s Theorem

Proof

Assume to the contrary that a nontrivial semantic property P is
decidable, and it is decided by an RM MP . W.l.o.g. a RM T∅ that
always rejects is not in P — otherwise we shall proceed with
the complement of P instead.
Let T be a RM with ⌜T⌝ ∈ P . We build an MP oracle-equipped
RM S to decide ARM.
On input ⟨M,w⟩:

1 Build a RM NM,w which on input x , simulates M on w . If M
halts and rejects, it rejects. Otherwise, it simulates T on x ,
and accepts if T accepts.

2 Use MP to answer if ⌜NM,w⌝ ∈ P .
Note the language of NM,w is L(T ) if w is accepted by M and ∅
otherwise.

We know ATM is undecidable, so P must also be undecidable.



Computable Functions Reductions Oracles Rice’s Theorem

Proof

Assume to the contrary that a nontrivial semantic property P is
decidable, and it is decided by an RM MP . W.l.o.g. a RM T∅ that
always rejects is not in P — otherwise we shall proceed with
the complement of P instead.
Let T be a RM with ⌜T⌝ ∈ P . We build an MP oracle-equipped
RM S to decide ARM.
On input ⟨M,w⟩:

1 Build a RM NM,w which on input x , simulates M on w . If M
halts and rejects, it rejects. Otherwise, it simulates T on x ,
and accepts if T accepts.

2 Use MP to answer if ⌜NM,w⌝ ∈ P .
Note the language of NM,w is L(T ) if w is accepted by M and ∅
otherwise.
We know ATM is undecidable, so P must also be undecidable.



Computable Functions Reductions Oracles Rice’s Theorem

Applications of Rice’s Theorem

The following are all undecidable by Rice’s theorem:
Whether a language (of an RM/TM) is empty.
Whether a language (of an RM/TM) is non-empty.
Whether a language (of an RM/TM) is regular.
Whether a language (of an RM/TM) is context-free.

Note
Sometimes we can prove these properties for particular
machines, but it is not decidable in general.



Computable Functions Reductions Oracles Rice’s Theorem

Wrong applications of Rice’s Theorem

Rice’s theorem cannot be used for these:
Whether a TM has less than 7 states.
Whether a TM has a final state.
Whether a TM has a start state.

(Note how these are properties of machines, not languages)
Whether a language (of an RM/TM) is a subset of Σ∗.
Whether a language of an RM is a language of a TM.

(These properties are trivial).

Far-reaching Consequence
We cannot write a program that answers a non-trivial question
about the black-box behaviours of programs.



Computable Functions Reductions Oracles Rice’s Theorem

Wrong applications of Rice’s Theorem

Rice’s theorem cannot be used for these:
Whether a TM has less than 7 states.
Whether a TM has a final state.
Whether a TM has a start state.

(Note how these are properties of machines, not languages)
Whether a language (of an RM/TM) is a subset of Σ∗.
Whether a language of an RM is a language of a TM.

(These properties are trivial).

Far-reaching Consequence
We cannot write a program that answers a non-trivial question
about the black-box behaviours of programs.



Computable Functions Reductions Oracles Rice’s Theorem

Wrong applications of Rice’s Theorem

Rice’s theorem cannot be used for these:
Whether a TM has less than 7 states.
Whether a TM has a final state.
Whether a TM has a start state.

(Note how these are properties of machines, not languages)
Whether a language (of an RM/TM) is a subset of Σ∗.
Whether a language of an RM is a language of a TM.

(These properties are trivial).

Far-reaching Consequence
We cannot write a program that answers a non-trivial question
about the black-box behaviours of programs.



Computable Functions Reductions Oracles Rice’s Theorem

Next time..

We have developed a theory of undecidable problems, and
shown how reductions can be used to show more problems
are undecidable.
We also saw the daisy cutter of undecidability results, Rice’s
theorem.

Next time
We will address semi-decidable problems. What about
machines where we always halt if we accept, but if we do not
accept, we may loop forever?



Computable Functions Reductions Oracles Rice’s Theorem

Next time..

We have developed a theory of undecidable problems, and
shown how reductions can be used to show more problems
are undecidable.
We also saw the daisy cutter of undecidability results, Rice’s
theorem.

Next time
We will address semi-decidable problems. What about
machines where we always halt if we accept, but if we do not
accept, we may loop forever?


	Computable Functions
	Reductions
	Oracles
	Rice's Theorem

