
Introduction to Theoretical Computer
Science

Lecture 5: Starting on Computability

Dr. Liam O’Connor
University of Edinburgh
Semester 1, 2023/2024

Non-context-free languages Algorithms Register Machines

More Pigeonholes

Suppose a CFG has n non-terminals, and we have a parse tree
of height k > n. What must have happened?.

The same non-terminal V must have appeared as its own
descendant in the tree.

Pumping for CFLs

Pumping down Cut the tree at the higher occurrence of V and
replace it with the subtree at the lower
occurrence of V .

Pumping up Cut at the lower occurrence and replace it with a
fresh copy of the higher occurrence.

Non-context-free languages Algorithms Register Machines

More Pigeonholes

Suppose a CFG has n non-terminals, and we have a parse tree
of height k > n. What must have happened?.
The same non-terminal V must have appeared as its own
descendant in the tree.

Pumping for CFLs

Pumping down Cut the tree at the higher occurrence of V and
replace it with the subtree at the lower
occurrence of V .

Pumping up Cut at the lower occurrence and replace it with a
fresh copy of the higher occurrence.

Non-context-free languages Algorithms Register Machines

Pumping Lemma for CFLs

Theorem
If L is context-free then there exists a p ∈ N (the pumping
length) such that if w ∈ L with |w | ≥ p then w may be split into
five pieces w = uvxyz such that:

1 uv ixy iz ∈ L for all i ∈ N.
2 |vy | > 0 and
3 |vxy | ≤ p

It can be useful to think of it like a game:
1 You pick a language L
2 Adversary picks a pumping length p
3 You pick a word w ∈ L with |w | ≥ p.
4 Adversary splits it into uvxyz s.t. |vxy | ≤ p and vy ̸= ε.
5 You win if you can find i ∈ N such that uv ixy iz /∈ L. Your

prize is a proof of L not being context-free.

Non-context-free languages Algorithms Register Machines

Pumping Lemma for CFLs

Theorem
If L is context-free then there exists a p ∈ N (the pumping
length) such that if w ∈ L with |w | ≥ p then w may be split into
five pieces w = uvxyz such that:

1 uv ixy iz ∈ L for all i ∈ N.
2 |vy | > 0 and
3 |vxy | ≤ p

It can be useful to think of it like a game:

1 You pick a language L
2 Adversary picks a pumping length p
3 You pick a word w ∈ L with |w | ≥ p.
4 Adversary splits it into uvxyz s.t. |vxy | ≤ p and vy ̸= ε.
5 You win if you can find i ∈ N such that uv ixy iz /∈ L. Your

prize is a proof of L not being context-free.

Non-context-free languages Algorithms Register Machines

Pumping Lemma for CFLs

Theorem
If L is context-free then there exists a p ∈ N (the pumping
length) such that if w ∈ L with |w | ≥ p then w may be split into
five pieces w = uvxyz such that:

1 uv ixy iz ∈ L for all i ∈ N.
2 |vy | > 0 and
3 |vxy | ≤ p

It can be useful to think of it like a game:
1 You pick a language L

2 Adversary picks a pumping length p
3 You pick a word w ∈ L with |w | ≥ p.
4 Adversary splits it into uvxyz s.t. |vxy | ≤ p and vy ̸= ε.
5 You win if you can find i ∈ N such that uv ixy iz /∈ L. Your

prize is a proof of L not being context-free.

Non-context-free languages Algorithms Register Machines

Pumping Lemma for CFLs

Theorem
If L is context-free then there exists a p ∈ N (the pumping
length) such that if w ∈ L with |w | ≥ p then w may be split into
five pieces w = uvxyz such that:

1 uv ixy iz ∈ L for all i ∈ N.
2 |vy | > 0 and
3 |vxy | ≤ p

It can be useful to think of it like a game:
1 You pick a language L
2 Adversary picks a pumping length p

3 You pick a word w ∈ L with |w | ≥ p.
4 Adversary splits it into uvxyz s.t. |vxy | ≤ p and vy ̸= ε.
5 You win if you can find i ∈ N such that uv ixy iz /∈ L. Your

prize is a proof of L not being context-free.

Non-context-free languages Algorithms Register Machines

Pumping Lemma for CFLs

Theorem
If L is context-free then there exists a p ∈ N (the pumping
length) such that if w ∈ L with |w | ≥ p then w may be split into
five pieces w = uvxyz such that:

1 uv ixy iz ∈ L for all i ∈ N.
2 |vy | > 0 and
3 |vxy | ≤ p

It can be useful to think of it like a game:
1 You pick a language L
2 Adversary picks a pumping length p
3 You pick a word w ∈ L with |w | ≥ p.

4 Adversary splits it into uvxyz s.t. |vxy | ≤ p and vy ̸= ε.
5 You win if you can find i ∈ N such that uv ixy iz /∈ L. Your

prize is a proof of L not being context-free.

Non-context-free languages Algorithms Register Machines

Pumping Lemma for CFLs

Theorem
If L is context-free then there exists a p ∈ N (the pumping
length) such that if w ∈ L with |w | ≥ p then w may be split into
five pieces w = uvxyz such that:

1 uv ixy iz ∈ L for all i ∈ N.
2 |vy | > 0 and
3 |vxy | ≤ p

It can be useful to think of it like a game:
1 You pick a language L
2 Adversary picks a pumping length p
3 You pick a word w ∈ L with |w | ≥ p.
4 Adversary splits it into uvxyz s.t. |vxy | ≤ p and vy ̸= ε.

5 You win if you can find i ∈ N such that uv ixy iz /∈ L. Your
prize is a proof of L not being context-free.

Non-context-free languages Algorithms Register Machines

Pumping Lemma for CFLs

Theorem
If L is context-free then there exists a p ∈ N (the pumping
length) such that if w ∈ L with |w | ≥ p then w may be split into
five pieces w = uvxyz such that:

1 uv ixy iz ∈ L for all i ∈ N.
2 |vy | > 0 and
3 |vxy | ≤ p

It can be useful to think of it like a game:
1 You pick a language L
2 Adversary picks a pumping length p
3 You pick a word w ∈ L with |w | ≥ p.
4 Adversary splits it into uvxyz s.t. |vxy | ≤ p and vy ̸= ε.
5 You win if you can find i ∈ N such that uv ixy iz /∈ L. Your

prize is a proof of L not being context-free.

Non-context-free languages Algorithms Register Machines

Examples

Example
Let L = {aibici | i > 0}.

If L is a CFL it must have a pumping
length p. Consider the word w = apbpcp. Then, we cannot
avoid contradiction no matter how we split w = uvxyz :

If vxy is in a∗b∗ then uxz (i.e. uv0xy0z) is not in L because
condition 2 says vy contains at least one symbol. So uxz has
fewer than p copies of a or b but still p copies of c. Similarly if
vxy is in b∗c∗.

There are no other cases due to condition 3.

Non-context-free languages Algorithms Register Machines

Examples

Example
Let L = {aibici | i > 0}. If L is a CFL it must have a pumping
length p.

Consider the word w = apbpcp. Then, we cannot
avoid contradiction no matter how we split w = uvxyz :

If vxy is in a∗b∗ then uxz (i.e. uv0xy0z) is not in L because
condition 2 says vy contains at least one symbol. So uxz has
fewer than p copies of a or b but still p copies of c. Similarly if
vxy is in b∗c∗.

There are no other cases due to condition 3.

Non-context-free languages Algorithms Register Machines

Examples

Example
Let L = {aibici | i > 0}. If L is a CFL it must have a pumping
length p. Consider the word w = apbpcp.

Then, we cannot
avoid contradiction no matter how we split w = uvxyz :

If vxy is in a∗b∗ then uxz (i.e. uv0xy0z) is not in L because
condition 2 says vy contains at least one symbol. So uxz has
fewer than p copies of a or b but still p copies of c. Similarly if
vxy is in b∗c∗.

There are no other cases due to condition 3.

Non-context-free languages Algorithms Register Machines

Examples

Example
Let L = {aibici | i > 0}. If L is a CFL it must have a pumping
length p. Consider the word w = apbpcp. Then, we cannot
avoid contradiction no matter how we split w = uvxyz :

If vxy is in a∗b∗ then uxz (i.e. uv0xy0z) is not in L because
condition 2 says vy contains at least one symbol. So uxz has
fewer than p copies of a or b but still p copies of c. Similarly if
vxy is in b∗c∗.

There are no other cases due to condition 3.

Non-context-free languages Algorithms Register Machines

Examples

Example
Let L = {aibici | i > 0}. If L is a CFL it must have a pumping
length p. Consider the word w = apbpcp. Then, we cannot
avoid contradiction no matter how we split w = uvxyz :

If vxy is in a∗b∗ then uxz (i.e. uv0xy0z) is not in L because
condition 2 says vy contains at least one symbol. So uxz has
fewer than p copies of a or b but still p copies of c. Similarly if
vxy is in b∗c∗.

There are no other cases due to condition 3.

Non-context-free languages Algorithms Register Machines

Another example
Consider L = {ww | w ∈ {0, 1}∗}. If it is context free it must
have a pumping length p > 0.

A rule of thumb
Pick a string w that allows as few cases for partitions of
w = uvxyz as possible!

Consider the word 0p1p0p1p. Let uvxyz = w such that |vxy | ≤ p
and vy ̸= ε. vxy can range over at most two of the four regions:

If vxy is in a single one of the regions i.e. vxy ∈ 0∗ ∪ 1∗ then
pumping either way takes us out of L.
Otherwise, if vxy spans some part of the first two or last
two regions, i.e. a substring of 0p1p, pumping down will
take us out of L.
If vxy straddles the midpoint of w , pumping down will
remove 1s from the first half but 0s from the second half,
taking us out of L.

Non-context-free languages Algorithms Register Machines

Another example
Consider L = {ww | w ∈ {0, 1}∗}. If it is context free it must
have a pumping length p > 0.

A rule of thumb
Pick a string w that allows as few cases for partitions of
w = uvxyz as possible!

Consider the word 0p1p0p1p. Let uvxyz = w such that |vxy | ≤ p
and vy ̸= ε. vxy can range over at most two of the four regions:

If vxy is in a single one of the regions i.e. vxy ∈ 0∗ ∪ 1∗ then
pumping either way takes us out of L.
Otherwise, if vxy spans some part of the first two or last
two regions, i.e. a substring of 0p1p, pumping down will
take us out of L.
If vxy straddles the midpoint of w , pumping down will
remove 1s from the first half but 0s from the second half,
taking us out of L.

Non-context-free languages Algorithms Register Machines

Another example
Consider L = {ww | w ∈ {0, 1}∗}. If it is context free it must
have a pumping length p > 0.

A rule of thumb
Pick a string w that allows as few cases for partitions of
w = uvxyz as possible!

Consider the word 0p1p0p1p. Let uvxyz = w such that |vxy | ≤ p
and vy ̸= ε. vxy can range over at most two of the four regions:

If vxy is in a single one of the regions i.e. vxy ∈ 0∗ ∪ 1∗ then
pumping either way takes us out of L.
Otherwise, if vxy spans some part of the first two or last
two regions, i.e. a substring of 0p1p, pumping down will
take us out of L.
If vxy straddles the midpoint of w , pumping down will
remove 1s from the first half but 0s from the second half,
taking us out of L.

Non-context-free languages Algorithms Register Machines

Another example
Consider L = {ww | w ∈ {0, 1}∗}. If it is context free it must
have a pumping length p > 0.

A rule of thumb
Pick a string w that allows as few cases for partitions of
w = uvxyz as possible!

Consider the word 0p1p0p1p. Let uvxyz = w such that |vxy | ≤ p
and vy ̸= ε. vxy can range over at most two of the four regions:

If vxy is in a single one of the regions i.e. vxy ∈ 0∗ ∪ 1∗ then
pumping either way takes us out of L.

Otherwise, if vxy spans some part of the first two or last
two regions, i.e. a substring of 0p1p, pumping down will
take us out of L.
If vxy straddles the midpoint of w , pumping down will
remove 1s from the first half but 0s from the second half,
taking us out of L.

Non-context-free languages Algorithms Register Machines

Another example
Consider L = {ww | w ∈ {0, 1}∗}. If it is context free it must
have a pumping length p > 0.

A rule of thumb
Pick a string w that allows as few cases for partitions of
w = uvxyz as possible!

Consider the word 0p1p0p1p. Let uvxyz = w such that |vxy | ≤ p
and vy ̸= ε. vxy can range over at most two of the four regions:

If vxy is in a single one of the regions i.e. vxy ∈ 0∗ ∪ 1∗ then
pumping either way takes us out of L.
Otherwise, if vxy spans some part of the first two or last
two regions, i.e. a substring of 0p1p, pumping down will
take us out of L.

If vxy straddles the midpoint of w , pumping down will
remove 1s from the first half but 0s from the second half,
taking us out of L.

Non-context-free languages Algorithms Register Machines

Another example
Consider L = {ww | w ∈ {0, 1}∗}. If it is context free it must
have a pumping length p > 0.

A rule of thumb
Pick a string w that allows as few cases for partitions of
w = uvxyz as possible!

Consider the word 0p1p0p1p. Let uvxyz = w such that |vxy | ≤ p
and vy ̸= ε. vxy can range over at most two of the four regions:

If vxy is in a single one of the regions i.e. vxy ∈ 0∗ ∪ 1∗ then
pumping either way takes us out of L.
Otherwise, if vxy spans some part of the first two or last
two regions, i.e. a substring of 0p1p, pumping down will
take us out of L.
If vxy straddles the midpoint of w , pumping down will
remove 1s from the first half but 0s from the second half,
taking us out of L.

Non-context-free languages Algorithms Register Machines

Chomsky Grammars

CFGs are a special case of Chomsky Grammars. Chomsky
Grammars are much like CFGs except that the left-hand side of
a production may be any string that includes at least one
non-terminal:

Example

S → abc | aAbc
Ab → bA
Ac → Bbcc
bB → Bb
aB → aaA | aa

This grammar is called context-sensitive

Non-context-free languages Algorithms Register Machines

Chomsky Grammars

CFGs are a special case of Chomsky Grammars. Chomsky
Grammars are much like CFGs except that the left-hand side of
a production may be any string that includes at least one
non-terminal:

Example

S → abc | aAbc
Ab → bA
Ac → Bbcc
bB → Bb
aB → aaA | aa

This grammar is called context-sensitive

Non-context-free languages Algorithms Register Machines

The Chomsky Hierarchy

Definition
A grammar G = (N,Σ,P, S) is of type:

0 (or computably enumerable) in the general case.

1 (or context-sensitive) if |α| ≤ |β| for all productions
α → β, except we also allow S → ε if S does not
occur on the RHS of any rule.

2 (or context-free) if all productions are of the form
A → α (i.e. a CFG).

3 (or right-linear) if all productions are of the form
A → w or A → wB where w ∈ Σ and B ∈ N.

Recursively enumerable is also called Turing-recognisable.
Right-linear is also called...regular!

Non-context-free languages Algorithms Register Machines

The Chomsky Hierarchy

Definition
A grammar G = (N,Σ,P, S) is of type:

0 (or computably enumerable) in the general case.
1 (or context-sensitive) if |α| ≤ |β| for all productions

α → β, except we also allow S → ε if S does not
occur on the RHS of any rule.

2 (or context-free) if all productions are of the form
A → α (i.e. a CFG).

3 (or right-linear) if all productions are of the form
A → w or A → wB where w ∈ Σ and B ∈ N.

Recursively enumerable is also called Turing-recognisable.
Right-linear is also called...regular!

Non-context-free languages Algorithms Register Machines

The Chomsky Hierarchy

Definition
A grammar G = (N,Σ,P, S) is of type:

0 (or computably enumerable) in the general case.
1 (or context-sensitive) if |α| ≤ |β| for all productions

α → β, except we also allow S → ε if S does not
occur on the RHS of any rule.

2 (or context-free) if all productions are of the form
A → α (i.e. a CFG).

3 (or right-linear) if all productions are of the form
A → w or A → wB where w ∈ Σ and B ∈ N.

Recursively enumerable is also called Turing-recognisable.
Right-linear is also called...regular!

Non-context-free languages Algorithms Register Machines

The Chomsky Hierarchy

Definition
A grammar G = (N,Σ,P, S) is of type:

0 (or computably enumerable) in the general case.
1 (or context-sensitive) if |α| ≤ |β| for all productions

α → β, except we also allow S → ε if S does not
occur on the RHS of any rule.

2 (or context-free) if all productions are of the form
A → α (i.e. a CFG).

3 (or right-linear) if all productions are of the form
A → w or A → wB where w ∈ Σ and B ∈ N.

Recursively enumerable is also called Turing-recognisable.
Right-linear is also called...regular!

Non-context-free languages Algorithms Register Machines

The Chomsky Hierarchy

Definition
A grammar G = (N,Σ,P, S) is of type:

0 (or computably enumerable) in the general case.
1 (or context-sensitive) if |α| ≤ |β| for all productions

α → β, except we also allow S → ε if S does not
occur on the RHS of any rule.

2 (or context-free) if all productions are of the form
A → α (i.e. a CFG).

3 (or right-linear) if all productions are of the form
A → w or A → wB where w ∈ Σ and B ∈ N.

Recursively enumerable is also called Turing-recognisable.
Right-linear is also called...

regular!

Non-context-free languages Algorithms Register Machines

The Chomsky Hierarchy

Definition
A grammar G = (N,Σ,P, S) is of type:

0 (or computably enumerable) in the general case.
1 (or context-sensitive) if |α| ≤ |β| for all productions

α → β, except we also allow S → ε if S does not
occur on the RHS of any rule.

2 (or context-free) if all productions are of the form
A → α (i.e. a CFG).

3 (or right-linear) if all productions are of the form
A → w or A → wB where w ∈ Σ and B ∈ N.

Recursively enumerable is also called Turing-recognisable.
Right-linear is also called...regular!

Non-context-free languages Algorithms Register Machines

Emptiness

Can we write a computer program to determine if a given
regular language is empty?

Emptiness for regular languages
Given a finite automaton, this is an instance of graph
reachability — can we reach a final state? Can be done via
depth-first search.
Given a regular expression, we can work inductively (see
board).

Non-context-free languages Algorithms Register Machines

Emptiness

Can we write a computer program to determine if a given
regular language is empty?

Emptiness for regular languages
Given a finite automaton, this is an instance of graph
reachability — can we reach a final state? Can be done via
depth-first search.

Given a regular expression, we can work inductively (see
board).

Non-context-free languages Algorithms Register Machines

Emptiness

Can we write a computer program to determine if a given
regular language is empty?

Emptiness for regular languages
Given a finite automaton, this is an instance of graph
reachability — can we reach a final state? Can be done via
depth-first search.
Given a regular expression, we can work inductively (see
board).

Non-context-free languages Algorithms Register Machines

Emptiness Continued

Can we write a computer program to determine if a given
context-free language is empty?

Emptiness of CFLs
Given a CFG for our language:

1 Mark the terminals and ε as generating.
2 Mark as generating all non-terminals which have a

production with only generating symbols in their RHS.
3 Repeat until nothing new is marked generating.
4 Check whether S is marked as generating.

Non-context-free languages Algorithms Register Machines

Emptiness Continued

Can we write a computer program to determine if a given
context-free language is empty?

Emptiness of CFLs
Given a CFG for our language:

1 Mark the terminals and ε as generating.
2 Mark as generating all non-terminals which have a

production with only generating symbols in their RHS.
3 Repeat until nothing new is marked generating.
4 Check whether S is marked as generating.

Non-context-free languages Algorithms Register Machines

Equivalence

Can we write a computer program to determine if two given
DFAs are equivalent?

Equivalence of Regular Languages
Given two DFAs for L1 and L2 we can use our standard
constructions to produce a DFA of the symmetric set
difference:

(L1 ∩ L2) ∪ (L2 ∩ L1)

(Constructions for complement and intersection are in coursework 1, not lectures.)
If this DFA is empty, then the two languages are equal.

Non-context-free languages Algorithms Register Machines

Equivalence

Can we write a computer program to determine if two given
DFAs are equivalent?

Equivalence of Regular Languages
Given two DFAs for L1 and L2 we can use our standard
constructions to produce a DFA of the symmetric set
difference:

(L1 ∩ L2) ∪ (L2 ∩ L1)

(Constructions for complement and intersection are in coursework 1, not lectures.)
If this DFA is empty, then the two languages are equal.

Non-context-free languages Algorithms Register Machines

Equivalence Continued

Later we’ll develop a theory that allows us to prove rigorously
that there are problems that cannot be solved by any algorithm
that can be implemented as a conventional computer program.

Such problems are called undecidable.

Many undecidable problems exist for CFLs:
Are two CFGs equivalent?
Is a given CFG ambiguous?
Is there a way to make a CFG unambiguous?
Is the intersection of two CFLs empty?
Does a CFG generate all strings Σ∗?

Non-context-free languages Algorithms Register Machines

Equivalence Continued

Later we’ll develop a theory that allows us to prove rigorously
that there are problems that cannot be solved by any algorithm
that can be implemented as a conventional computer program.

Such problems are called undecidable.

Many undecidable problems exist for CFLs:
Are two CFGs equivalent?
Is a given CFG ambiguous?
Is there a way to make a CFG unambiguous?
Is the intersection of two CFLs empty?
Does a CFG generate all strings Σ∗?

Non-context-free languages Algorithms Register Machines

Register Machines

Key Insight
There is a general model of computation

You may have heard of the Turing Machine, but we will first
focus on something closer to our understanding of programs.

Definition
A register machine, or RM, consists of:

A fixed number m of registers R0 . . .Rm−1, which each
hold a natural number.
A fixed program P which is a sequence of n instructions
I0 . . . In−1

Each instruction is either: INC(i), which increments register Ri ,
or DECJZ(i , j) which decrements Ri unless Ri = 0 in which
case it jumps to Ij .

Non-context-free languages Algorithms Register Machines

Register Machines

Key Insight
There is a general model of computation

You may have heard of the Turing Machine, but we will first
focus on something closer to our understanding of programs.

Definition
A register machine, or RM, consists of:

A fixed number m of registers R0 . . .Rm−1, which each
hold a natural number.
A fixed program P which is a sequence of n instructions
I0 . . . In−1

Each instruction is either: INC(i), which increments register Ri ,
or DECJZ(i , j) which decrements Ri unless Ri = 0 in which
case it jumps to Ij .

Non-context-free languages Algorithms Register Machines

Questions of RMs

What can we compute with RMs? What is unrealistic about
them?

Claim
RMs can compute anything any other computer can.

Non-context-free languages Algorithms Register Machines

Questions of RMs

What can we compute with RMs? What is unrealistic about
them?

Claim
RMs can compute anything any other computer can.

Non-context-free languages Algorithms Register Machines

RM ASM

Problem
Programming in RMs directly is very tedious and programs can
be overlong.

We will use some simple notation similar to assembly
language to simplify it.

Macros

We’ll write them in English, e.g. “add Ri to Rj clearing Ri”.
When defining a macro, we’ll number instructions from
zero, but the instructions are renumbered when macros
are expanded. We also use symbolic labels for jumps.
Macros can use special, negative-indexed registers,
guaranteed not to be used by normal programs.

Non-context-free languages Algorithms Register Machines

Goto Ij using R−1 as temp

0 DECJZ (−1, j)

Clear Ri
0 DECJZ (i , 2)
1 GOTO 0 (using macro above)

Copy Ri to Rj using R−2 as temp
0 CLEAR Rj

loop1 : 2 DECJZ (i , loop2)
3 INC (j)
4 INC (−2)
5 GOTO loop1

loop2 : 6 DECJZ (−2, end)
7 INC (i)
8 GOTO loop2

end 9

Non-context-free languages Algorithms Register Machines

Goto Ij using R−1 as temp

0 DECJZ (−1, j)

Clear Ri
0 DECJZ (i , 2)
1 GOTO 0 (using macro above)

Copy Ri to Rj using R−2 as temp
0 CLEAR Rj

loop1 : 2 DECJZ (i , loop2)
3 INC (j)
4 INC (−2)
5 GOTO loop1

loop2 : 6 DECJZ (−2, end)
7 INC (i)
8 GOTO loop2

end 9

Non-context-free languages Algorithms Register Machines

Goto Ij using R−1 as temp

0 DECJZ (−1, j)

Clear Ri
0 DECJZ (i , 2)
1 GOTO 0 (using macro above)

Copy Ri to Rj using R−2 as temp
0 CLEAR Rj

loop1 : 2 DECJZ (i , loop2)
3 INC (j)
4 INC (−2)
5 GOTO loop1

loop2 : 6 DECJZ (−2, end)
7 INC (i)
8 GOTO loop2

end 9

Non-context-free languages Algorithms Register Machines

RM Programming Exercises

Addition and subtraction of registers
Comparison of registers
Multiplication of registers
Division/Remainder of Registers

Non-context-free languages Algorithms Register Machines

How many registers?

So far, we’ve just assumed we had as many registers as we
needed. But how many do we actually need?

Pairing functions
A pairing function is an injective function N× N → N.
An example is f (x , y) = 2x3y .
We write ⟨x , y⟩2 for f (x , y). If z = ⟨x , y⟩2, let z0 = x and z1 = y .

Exercise: Program a pairing function and unpairing functions
on a RM.
Exercise: Design (or look up) a surjective pairing function.

Generalising
Just a 2-tuple pairing function is enough to cram an arbitrary
sequence of natural numbers into one N∗ → N.

Non-context-free languages Algorithms Register Machines

How many registers?

So far, we’ve just assumed we had as many registers as we
needed. But how many do we actually need?

Pairing functions
A pairing function is an injective function N× N → N.
An example is f (x , y) = 2x3y .
We write ⟨x , y⟩2 for f (x , y). If z = ⟨x , y⟩2, let z0 = x and z1 = y .

Exercise: Program a pairing function and unpairing functions
on a RM.
Exercise: Design (or look up) a surjective pairing function.

Generalising
Just a 2-tuple pairing function is enough to cram an arbitrary
sequence of natural numbers into one N∗ → N.

Non-context-free languages Algorithms Register Machines

How many registers?

So far, we’ve just assumed we had as many registers as we
needed. But how many do we actually need?

Pairing functions
A pairing function is an injective function N× N → N.
An example is f (x , y) = 2x3y .
We write ⟨x , y⟩2 for f (x , y). If z = ⟨x , y⟩2, let z0 = x and z1 = y .

Exercise: Program a pairing function and unpairing functions
on a RM.
Exercise: Design (or look up) a surjective pairing function.

Generalising
Just a 2-tuple pairing function is enough to cram an arbitrary
sequence of natural numbers into one N∗ → N.

Non-context-free languages Algorithms Register Machines

Conclusion

With pairing functions, we can simulate any number of
registers using just the registers we need to compute the
pairing and unpairing functions, and one user register.

Question
So, how many registers do we actually need?

	Non-context-free languages
	Algorithms
	Register Machines

