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A language is context-free (a CFL) iff it is recognised by a
context-free grammar.
Exercise: Are all regular languages context-free?

Uses of CFLs
Many programming languages are syntactically context-free.
Even the syntax we defined last lecture for regular expressions
is context free. Suppose Σ = {a, b}.

S → ∅ | ε | a | b | S ∪ S | S ◦ S | S∗ | (S)

Exercise: Derive with this grammar that (a ∪ b ◦ a)∗ is a regular
expression.
Always replace the leftmost remaining non-terminal at each
step, giving a leftmost derivation.
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Parse Trees

A parse tree is a tree that shows how
to derive a string from a non-terminal.

The yield of a parse tree is the con-
catenation of all symbols at the leaves
of the tree. If the root of the tree is S
then the yield x ∈ L(G ).

Exercise: Are there multiple parse
trees possible for our example?

Ambiguity
A grammar is ambiguous if there is
more than one parse tree (or leftmost
derivation) for a given string. This can
cause problems with parsing and with
interpretation.
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Eliminating Ambiguity
We want to eliminate ambiguity while still accepting all strings
we accepted before. This is possible for our regular
expressions language.
Define first the atomic expressions:

A → (S) | ∅ | ε | a | b

Then expressions that may include Kleene star:

K → A | A∗

Then the expressions that may include composition (but
left-associatively):

C → K | C ◦ K

Lastly, expressions that may include union:

S → C | S ∪ C

Question: What order of operations is assumed here?
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Push-down Automata

Push-down Automata (PDAs) are to CFGs what Finite Automata
are to regexps. Just as recursion is implemented with a stack
in computer programming, a PDA is a ε-NFA with an additional
stack.
It is more powerful than an NFA as it has infinite memory, but
can only use it by pushing and popping symbols.
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Push-down Automata

Example (Push-down Automaton)

q0 q1 q2 q3
ε, ε → •

0, ε → 0
1, ε → 1

ε, ε → ε

0, 0 → ε

1, 1 → ε

ε, • → ε

Read x , y → z as consuming input x , popping y off the top of
the stack, and pushing z on to the stack. The transition may
only fire if y is on top of the stack.
In the above example, the input alphabet Σ is {0, 1} and the
stack alphabet Γ is {0, 1, •}.
Exercise: What language is accepted here? Derive the string
1001.



CFGs and PDAs

Formally

Definition
A push-down automaton is a 6-tuple (Q,Σ,Γ, δ, q0,F ) where
Q,Σ,Γ are all finite sets. Γ is the stack alphabet, and δ now
may take a stack symbol as input or return one as output:

δ : Q × Σε × Γε → P(Q × Γε)

All other components are as with ε-NFAs.

Acceptance
A string w is accepted by a PDA if it ends in a final state, i.e.
δ∗(q0,w , ε) gives a state q and a stack γ such that q ∈ F .
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Claim

Theorem
A language is context-free iff it is recognised by a push-down
automaton.

Think about why this might be.
Can you think about languages that might not be
context-free?
Next lecture: beyond the context-free languages.



CFGs and PDAs

Claim

Theorem
A language is context-free iff it is recognised by a push-down
automaton.

The details of the proof of this are in Sipser’s book, but I will
give a sketch here.
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CFG to PDA

The upper self-loop is added for every terminal a in the CFG.
The lower self-loop is a shorthand for a looping sequence of
states added for each production A → w that builds up w on
the stack one symbol at a time.

q0 q1 q2
ε, ε → S•

a, a → ε

ε, • → ε

ε,A → w
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PDA to CFG

First, we make sure that the PDA has only one accept state,
empties its stack before terminating, and has only transitions
that either push or pop a symbol (but not transitions that do
both or neither).

Given such a PDA P = (Q,Σ,Γ, δ, q0,F ), we provide a CFG
(V ,Σ,R, S) with V containing a non-terminal Apq for every pair
of states (p, q) ∈ Q × Q. The non-terminal Apq generates all
strings that go from p with an empty stack to q with an empty
stack. Then S is just Aq0qaccept .R consists of:

Apq → aArsb if p
a,ε→t−−−−→ r and s

b,t→ε−−−−→ q (for intermediate
states r , s and stack symbol t).
Apq → AprArq for all intermediate states r .
App → ε

Proofs of why this works are in Sipser.
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Closure properties

Are context-free languages closed under:
Union? Yes
Concatenation? Yes
Kleene Star? Yes
Intersection? No

Example
Consider L1 = {aibicj | i , j ∈ N} and L2 = {ajbici | i , j ∈ N}.

Complementation? No (via de Morgan’s laws)
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