
Introduction to Theoretical Computer
Science

Lecture 4: Beyond the Context-Free Languages

Dr. Liam O’Connor
University of Edinburgh
Semester 1, 2023/2024



CFGs and PDAs

A language is context-free (a CFL) iff it is recognised by a
context-free grammar.
Exercise: Are all regular languages context-free?

Uses of CFLs
Many programming languages are syntactically context-free.
Even the syntax we defined last lecture for regular expressions
is context free. Suppose Σ = {a, b}.

S → ∅ | ε | a | b | S ∪ S | S ◦ S | S∗ | (S)

Exercise: Derive with this grammar that (a ∪ b ◦ a)∗ is a regular
expression.
Always replace the leftmost remaining non-terminal at each
step, giving a leftmost derivation.



CFGs and PDAs

Parse Trees

A parse tree is a tree that shows how
to derive a string from a non-terminal.

The yield of a parse tree is the con-
catenation of all symbols at the leaves
of the tree. If the root of the tree is S
then the yield x ∈ L(G ).

Exercise: Are there multiple parse
trees possible for our example?

Ambiguity
A grammar is ambiguous if there is
more than one parse tree (or leftmost
derivation) for a given string. This can
cause problems with parsing and with
interpretation.

S

S ∗

( S )

∪S S

a S ◦ S

b a



CFGs and PDAs

Eliminating Ambiguity
We want to eliminate ambiguity while still accepting all strings
we accepted before. This is possible for our regular
expressions language.
Define first the atomic expressions:

A → (S) | ∅ | ε | a | b

Then expressions that may include Kleene star:

K → A | A∗

Then the expressions that may include composition (but
left-associatively):

C → K | C ◦ K

Lastly, expressions that may include union:

S → C | S ∪ C

Question: What order of operations is assumed here?



CFGs and PDAs

Push-down Automata

Push-down Automata (PDAs) are to CFGs what Finite Automata
are to regexps. Just as recursion is implemented with a stack
in computer programming, a PDA is a ε-NFA with an additional
stack.
It is more powerful than an NFA as it has infinite memory, but
can only use it by pushing and popping symbols.



CFGs and PDAs

Push-down Automata

Example (Push-down Automaton)

q0 q1 q2 q3
ε, ε → •

0, ε → 0
1, ε → 1

ε, ε → ε

0, 0 → ε

1, 1 → ε

ε, • → ε

Read x , y → z as consuming input x , popping y off the top of
the stack, and pushing z on to the stack. The transition may
only fire if y is on top of the stack.
In the above example, the input alphabet Σ is {0, 1} and the
stack alphabet Γ is {0, 1, •}.
Exercise: What language is accepted here? Derive the string
1001.



CFGs and PDAs

Formally

Definition
A push-down automaton is a 6-tuple (Q,Σ,Γ, δ, q0,F ) where
Q,Σ,Γ are all finite sets. Γ is the stack alphabet, and δ now
may take a stack symbol as input or return one as output:

δ : Q × Σε × Γε → P(Q × Γε)

All other components are as with ε-NFAs.

Acceptance
A string w is accepted by a PDA if it ends in a final state, i.e.
δ∗(q0,w , ε) gives a state q and a stack γ such that q ∈ F .



CFGs and PDAs

Claim

Theorem
A language is context-free iff it is recognised by a push-down
automaton.

Think about why this might be.
Can you think about languages that might not be
context-free?
Next lecture: beyond the context-free languages.



CFGs and PDAs

Claim

Theorem
A language is context-free iff it is recognised by a push-down
automaton.

The details of the proof of this are in Sipser’s book, but I will
give a sketch here.



CFGs and PDAs

CFG to PDA

The upper self-loop is added for every terminal a in the CFG.
The lower self-loop is a shorthand for a looping sequence of
states added for each production A → w that builds up w on
the stack one symbol at a time.

q0 q1 q2
ε, ε → S•

a, a → ε

ε, • → ε

ε,A → w



CFGs and PDAs

PDA to CFG

First, we make sure that the PDA has only one accept state,
empties its stack before terminating, and has only transitions
that either push or pop a symbol (but not transitions that do
both or neither).

Given such a PDA P = (Q,Σ,Γ, δ, q0,F ), we provide a CFG
(V ,Σ,R, S) with V containing a non-terminal Apq for every pair
of states (p, q) ∈ Q × Q. The non-terminal Apq generates all
strings that go from p with an empty stack to q with an empty
stack. Then S is just Aq0qaccept .R consists of:

Apq → aArsb if p
a,ε→t−−−−→ r and s

b,t→ε−−−−→ q (for intermediate
states r , s and stack symbol t).
Apq → AprArq for all intermediate states r .
App → ε

Proofs of why this works are in Sipser.



CFGs and PDAs

Closure properties

Are context-free languages closed under:
Union? Yes
Concatenation? Yes
Kleene Star? Yes
Intersection? No

Example
Consider L1 = {aibicj | i , j ∈ N} and L2 = {ajbici | i , j ∈ N}.

Complementation? No (via de Morgan’s laws)


	CFGs and PDAs

