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Non-regular languages

What are some examples of non-regular languages?

Canonical examples: Matching parentheses,
L1 = {anbn | n ∈ N}, L2 = {ciajbk | i = 1 ⇒ j = k + 1} .

Intuition
Recognising L1 requires counting the number of as in the
string, which is an unbounded natural number, which requires
unbounded memory (not a finite amount of states).

How would we prove this?
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Pumping

Suppose a DFA with k states accepts a word of length greater
than k . What must have happened?
⇒ The DFA must have visited a state more than once
⇒ There is a loop.

Therefore, if we go through that loop any number of times, the
DFA should accept those words also. We call this pumping.
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The Pumping Lemma

Theorem (Pumping Lemma)
If L ⊆ Σ∗ is regular then there exists a pumping length p ∈ N
such that for any w ∈ L where |w | ≥ p, we may split w into
three pieces w = xyz satisfying three conditions:

1 xy iz for all i ∈ N,
2 |y | > 0, and
3 |xy | ≤ p.

The proof of this relies on the pigeonhole principle.

We can prove a language is non-regular by taking the
contrapositive of this.

can’t be pumped ⇒ not regular

.
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Using the Pumping Lemma

To prove a negation (e.g. non-regularity), a common technique
is to assume to the contrary that the proposition holds and
show that it would lead to a contradiction.

Example (For L1)
Consider L1 = {anbn | n ∈ N}. Assume to the contrary that L1 is
regular and that p is its pumping length.

We know apbp is ∈ L1.
No matter how we split this word into xyz , none of these splits
satisfies the three conditions of the Pumping Lemma.
Case y consists only of as: Then xyyz contains more as than

bs, violating condition 1.
Case y contains bs: Then |xy | > p violating condition 3.
Case y is empty (ε): Then |y | = 0 violating condition 2.
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Another Non-Regular Language

Recall the language L2 = {ciajbk | i = 1 ⇒ j = k + 1}.

Definition
Define the left quotient of a language L, written w \L to be the
set of suffixes that can be added to w to produce a word in L:

w \L = {v | wv ∈ L}

Exercise: Prove that w \L is regular when L is regular.

Observe that ca\L2 = {anbn | n ∈ N} = L1, which is not regular.
Therefore L2 is also not regular.
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Limitations of the Pumping Lemma
We have seen that L2 = {ciajbk | i = 1 ⇒ j = k + 1} is not
regular, but it is possible to pump this.

Assume that L2 is regular and that p is its pumping length, and
that w ∈ L2 where |w | ≥ p. We choose x , y (and implicitly z)
based on the number of c’s in w , written C :
Case C = 0: Choose x = ε and y = first letter of w
Case 0 < C ≤ 3: Choose x = ε and y = cC

Case C > 3: Choose x = ε and y = cc
In each case, we can pump (i.e. repeat y arbitrarily many times
and stay in L2.)

So, the converse of the pumping lemma does not hold:

can’t be pumped ⇍ not regular

.
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Beyond the Pumping Lemma

The pumping lemma is useful, but not satisfying, because it is
not an exact characterisation.

Definition
Let L ⊆ Σ∗ and x , y ∈ Σ∗. If there exists a suffix string z such
that xz ∈ L but yz /∈ L (or vice-versa), then x and y are
distinguishable by L.
If x and y are not distinguishable by L, we say x ≡L y . This is
an equivalence relation.

The Myhill-Nerode Theorem
A language L is regular iff the number of ≡L equivalence
classes is finite.
Proof Sketch if time allows.
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Using Myhill-Nerode

To use Myhill-Nerode to show that L is non-regular, we must
show that there are infinite ≡L equivalence classes.

In detail
More specifically, we find an infinite sequence u0u1u2 . . . of
strings such that for any i and j (where i ̸= j), there is a string
wij such that uiwij ∈ L but ujwij /∈ L (or vice-versa).

Example

L1 = {anbn | n ∈ N}, choose ui = ai and wij = bi .
L2 = {ciajbk | i = 1 ⇒ j = k + 1}, choose ui = cai+1 and
wij = bi .
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Context-Free Languages

What would happen if we added recursion to regexps?

Definition
A Context-free grammar (CFG) is a 4-tuple (N,Σ,P, S) where:

N is a finite set of variables or non-terminals,
Σ is a finite set of terminals
P ⊆ N × (N ∪ Σ)∗ is a finite set of rules or productions.
Typically productions are written like:

A → aBc

Productions with common heads can be combined:
A → a | Aa | bAb

S ∈ N is the start variable.
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Context-Free Grammars
Notation: We use α, β, γ etc. to refer to sequences of terminals.

Definition (Derivations)
We make a derivation step αAβ ⇒G αγβ whenever (A → γ) ∈ P .
The language of a CFG G is:

L(G ) = {w ∈ Σ∗ | S ⇒∗
G w}

Where ⇒∗
G is the reflexive transitive closure of ⇒G .

Example
Given the CFG G :

G = ({S}, {0, 1, {S → ε | 0S1}, S)

What is the language of G?


	Non-regular Languages
	Context-Free Languages

