Introduction to Theoretical Computer Science

Lecture 3: Beyond the Regular Languages

Dr. Liam O'Connor

University of Edinburgh Semester 1, 2023/2024

Non-regular languages

What are some examples of *non-regular* languages?

Non-regular languages

What are some examples of *non-regular* languages? **Canonical examples:** Matching parentheses, $L_1 = \{a^n b^n \mid n \in \mathbb{N}\}, L_2 = \{c^i a^j b^k \mid i = 1 \Rightarrow j = k + 1\}.$

Non-regular languages

What are some examples of *non-regular* languages?

Canonical examples: Matching parentheses, $L_1 = \{a^n b^n \mid n \in \mathbb{N}\}, L_2 = \{c^i a^j b^k \mid i = 1 \Rightarrow j = k + 1\}.$

Intuition

Recognising L_1 requires counting the number of as in the string, which is an unbounded natural number, which requires unbounded memory (not a finite amount of states).

How would we prove this?

Suppose a DFA with k states accepts a word of length greater than k. What must have happened? \Rightarrow The DFA must have visited a state more than once \Rightarrow There is a loop.

Therefore, if we go through that loop any number of times, the DFA should accept those words also. We call this *pumping*.

The Pumping Lemma

Theorem (Pumping Lemma)

If $L \subseteq \Sigma^*$ is regular then there exists a *pumping length* $p \in \mathbb{N}$ such that for any $w \in L$ where $|w| \ge p$, we may split w into three pieces w = xyz satisfying three conditions:

- 1 $xy^i z$ for all $i \in \mathbb{N}$,
- 2 |y| > 0, and
- 3 $|xy| \le p$.

The proof of this relies on the pigeonhole principle.

The Pumping Lemma

Theorem (Pumping Lemma)

If $L \subseteq \Sigma^*$ is regular then there exists a *pumping length* $p \in \mathbb{N}$ such that for any $w \in L$ where $|w| \ge p$, we may split w into three pieces w = xyz satisfying three conditions:

- 1 $xy^i z$ for all $i \in \mathbb{N}$,
- 2 |y| > 0, and
- 3 $|xy| \le p$.

The proof of this relies on the pigeonhole principle.

We can prove a language is non-regular by taking the contrapositive of this.

can't be pumped \Rightarrow not regular

Using the Pumping Lemma

To prove a negation (e.g. non-regularity), a common technique is to assume to the contrary that the proposition holds and show that it would lead to a contradiction.

Example (For L_1)

Consider $L_1 = \{a^n b^n \mid n \in \mathbb{N}\}$. Assume to the contrary that L_1 is regular and that p is its pumping length.

Using the Pumping Lemma

To prove a negation (e.g. non-regularity), a common technique is to assume to the contrary that the proposition holds and show that it would lead to a contradiction.

Example (For L_1)

Consider $L_1 = \{a^n b^n \mid n \in \mathbb{N}\}$. Assume to the contrary that L_1 is regular and that p is its pumping length. We know $a^p b^p$ is $\in L_1$.

Using the Pumping Lemma

To prove a negation (e.g. non-regularity), a common technique is to assume to the contrary that the proposition holds and show that it would lead to a contradiction.

Example (For L_1)

Consider $L_1 = \{a^n b^n \mid n \in \mathbb{N}\}$. Assume to the contrary that L_1 is regular and that p is its pumping length. We know $a^p b^p$ is $\in L_1$. No matter how we split this word into xyz, none of these splits satisfies the three conditions of the Pumping Lemma.

Case y consists only of as: Then xyyz contains more as than bs, violating condition 1.

Using the Pumping Lemma

To prove a negation (e.g. non-regularity), a common technique is to assume to the contrary that the proposition holds and show that it would lead to a contradiction.

Example (For L_1)

Consider $L_1 = \{a^n b^n \mid n \in \mathbb{N}\}$. Assume to the contrary that L_1 is regular and that p is its pumping length. We know $a^p b^p$ is $\in L_1$. No matter how we split this word into *xyz*, none of these splits satisfies the three conditions of the Pumping Lemma.

Case y consists only of as: Then xyyz contains more as than bs, violating condition 1.

Case y contains bs: Then |xy| > p violating condition 3.

Using the Pumping Lemma

To prove a negation (e.g. non-regularity), a common technique is to assume to the contrary that the proposition holds and show that it would lead to a contradiction.

Example (For L_1)

Consider $L_1 = \{a^n b^n \mid n \in \mathbb{N}\}$. Assume to the contrary that L_1 is regular and that p is its pumping length. We know $a^p b^p$ is $\in L_1$. No matter how we split this word into xyz, none of these splits satisfies the three conditions of the Pumping Lemma.

Case y consists only of as: Then xyyz contains more as than bs, violating condition 1.

Case y contains bs: Then |xy| > p violating condition 3. Case y is empty (ε): Then |y| = 0 violating condition 2.

Another Non-Regular Language

Recall the language $L_2 = \{c^i a^j b^k \mid i = 1 \Rightarrow j = k + 1\}.$

Another Non-Regular Language

Recall the language
$$L_2 = \{c^i a^j b^k \mid i = 1 \Rightarrow j = k + 1\}.$$

Definition

Define the *left quotient* of a language *L*, written $w \setminus L$ to be the set of suffixes that can be added to *w* to produce a word in *L*:

$$w \setminus L = \{ v \mid wv \in L \}$$

Exercise: Prove that $w \setminus L$ is regular when *L* is regular.

Another Non-Regular Language

Recall the language
$$L_2 = \{c^i a^j b^k \mid i = 1 \Rightarrow j = k + 1\}.$$

Definition

Define the *left quotient* of a language *L*, written $w \setminus L$ to be the set of suffixes that can be added to *w* to produce a word in *L*:

$$w \setminus L = \{ v \mid wv \in L \}$$

Exercise: Prove that $w \setminus L$ is regular when L is regular.

Observe that $ca L_2 = \{a^n b^n \mid n \in \mathbb{N}\} = L_1$, which is not regular. Therefore L_2 is also **not regular**.

We have seen that $L_2 = \{c^i a^j b^k \mid i = 1 \Rightarrow j = k + 1\}$ is not regular, but it is possible to pump this.

We have seen that $L_2 = \{c^i a^j b^k \mid i = 1 \Rightarrow j = k + 1\}$ is not regular, but it is possible to pump this.

Assume that L_2 is regular and that p is its pumping length, and that $w \in L_2$ where $|w| \ge p$.

We have seen that $L_2 = \{c^i a^j b^k \mid i = 1 \Rightarrow j = k + 1\}$ is not regular, but it is possible to pump this.

Assume that L_2 is regular and that p is its pumping length, and that $w \in L_2$ where $|w| \ge p$. We choose x, y (and implicitly z) based on the number of c's in w, written C:

We have seen that $L_2 = \{c^i a^j b^k \mid i = 1 \Rightarrow j = k + 1\}$ is not regular, but it is possible to pump this.

Assume that L_2 is regular and that p is its pumping length, and that $w \in L_2$ where $|w| \ge p$. We choose x, y (and implicitly z) based on the number of c's in w, written C:

Case C = 0: Choose $x = \varepsilon$ and y = first letter of w

We have seen that $L_2 = \{c^i a^j b^k \mid i = 1 \Rightarrow j = k + 1\}$ is not regular, but it is possible to pump this.

Assume that L_2 is regular and that p is its pumping length, and that $w \in L_2$ where $|w| \ge p$. We choose x, y (and implicitly z) based on the number of c's in w, written C:

Case C = 0: Choose $x = \varepsilon$ and y = first letter of w

Case $0 < C \le 3$: Choose $x = \varepsilon$ and $y = c^C$

We have seen that $L_2 = \{c^i a^j b^k \mid i = 1 \Rightarrow j = k + 1\}$ is not regular, but it is possible to pump this.

Assume that L_2 is regular and that p is its pumping length, and that $w \in L_2$ where $|w| \ge p$. We choose x, y (and implicitly z) based on the number of c's in w, written C:

Case C = 0: Choose $x = \varepsilon$ and y = first letter of w

Case $0 < C \le 3$: Choose $x = \varepsilon$ and $y = c^C$

Case C > 3: Choose $x = \varepsilon$ and y = cc

We have seen that $L_2 = \{c^i a^j b^k \mid i = 1 \Rightarrow j = k + 1\}$ is not regular, but it is possible to pump this.

Assume that L_2 is regular and that p is its pumping length, and that $w \in L_2$ where $|w| \ge p$. We choose x, y (and implicitly z) based on the number of c's in w, written C:

Case C = 0: Choose $x = \varepsilon$ and y = first letter of w

Case $0 < C \le 3$: Choose $x = \varepsilon$ and $y = c^C$

Case C > 3: Choose $x = \varepsilon$ and y = cc

In each case, we can pump (i.e. repeat y arbitrarily many times and stay in L_2 .)

We have seen that $L_2 = \{c^i a^j b^k \mid i = 1 \Rightarrow j = k + 1\}$ is not regular, but it is possible to pump this.

Assume that L_2 is regular and that p is its pumping length, and that $w \in L_2$ where $|w| \ge p$. We choose x, y (and implicitly z) based on the number of c's in w, written C:

Case C = 0: Choose $x = \varepsilon$ and y = first letter of w

Case $0 < C \le 3$: Choose $x = \varepsilon$ and $y = c^C$

Case C > 3: Choose $x = \varepsilon$ and y = cc

In each case, we can pump (i.e. repeat y arbitrarily many times and stay in L_2 .)

So, the converse of the pumping lemma does not hold:

can't be pumped \Leftrightarrow not regular

Beyond the Pumping Lemma

The pumping lemma is useful, but not satisfying, because it is not an exact characterisation.

Beyond the Pumping Lemma

The pumping lemma is useful, but not satisfying, because it is not an exact characterisation.

Definition

Let $L \subseteq \Sigma^*$ and $x, y \in \Sigma^*$. If there exists a suffix string *z* such that $xz \in L$ but $yz \notin L$ (or vice-versa), then *x* and *y* are *distinguishable* by *L*.

Beyond the Pumping Lemma

The pumping lemma is useful, but not satisfying, because it is not an exact characterisation.

Definition

Let $L \subseteq \Sigma^*$ and $x, y \in \Sigma^*$. If there exists a suffix string *z* such that $xz \in L$ but $yz \notin L$ (or vice-versa), then *x* and *y* are *distinguishable* by *L*. If *x* and *y* are not distinguishable by *L*, we say $x \equiv_L y$. This is an *equivalence relation*.

Beyond the Pumping Lemma

The pumping lemma is useful, but not satisfying, because it is not an exact characterisation.

Definition

Let $L \subseteq \Sigma^*$ and $x, y \in \Sigma^*$. If there exists a suffix string *z* such that $xz \in L$ but $yz \notin L$ (or vice-versa), then *x* and *y* are *distinguishable* by *L*. If *x* and *y* are not distinguishable by *L*, we say $x \equiv_L y$. This is an *equivalence relation*.

The Myhill-Nerode Theorem

A language *L* is regular iff the number of \equiv_L equivalence classes is finite. **Proof Sketch** if time allows.

Using Myhill-Nerode

To use Myhill-Nerode to show that *L* is non-regular, we must show that there are infinite \equiv_L equivalence classes.

Using Myhill-Nerode

To use Myhill-Nerode to show that *L* is non-regular, we must show that there are infinite \equiv_L equivalence classes.

In detail

More specifically, we find an infinite sequence $u_0u_1u_2...$ of strings such that for any *i* and *j* (where $i \neq j$), there is a string w_{ij} such that $u_iw_{ij} \in L$ but $u_jw_{ij} \notin L$ (or vice-versa).

Using Myhill-Nerode

To use Myhill-Nerode to show that *L* is non-regular, we must show that there are infinite \equiv_L equivalence classes.

In detail

More specifically, we find an infinite sequence $u_0u_1u_2...$ of strings such that for any *i* and *j* (where $i \neq j$), there is a string w_{ij} such that $u_iw_{ij} \in L$ but $u_jw_{ij} \notin L$ (or vice-versa).

Example

■
$$L_1 = \{ \mathbf{a}^n \mathbf{b}^n \mid n \in \mathbb{N} \}$$
, choose $u_i = \mathbf{a}^i$ and $w_{ij} = \mathbf{b}^i$.

Using Myhill-Nerode

To use Myhill-Nerode to show that *L* is non-regular, we must show that there are infinite \equiv_L equivalence classes.

In detail

More specifically, we find an infinite sequence $u_0u_1u_2...$ of strings such that for any *i* and *j* (where $i \neq j$), there is a string w_{ij} such that $u_iw_{ij} \in L$ but $u_jw_{ij} \notin L$ (or vice-versa).

Example

■
$$L_1 = \{a^n b^n \mid n \in \mathbb{N}\}$$
, choose $u_i = a^i$ and $w_{ij} = b^i$.
■ $L_2 = \{c^i a^j b^k \mid i = 1 \Rightarrow j = k + 1\}$, choose $u_i = ca^{i+1}$ and $w_{ij} = b^i$.

Context-Free Languages

What would happen if we added recursion to regexps?

Context-Free Languages

What would happen if we added recursion to regexps?

Definition

A *Context-free grammar* (CFG) is a 4-tuple (N, Σ, P, S) where:

- *N* is a finite set of *variables* or *non-terminals*,
- **\Sigma** is a finite set of *terminals*
- $P \subseteq N \times (N \cup \Sigma)^*$ is a finite set of *rules* or *productions*. Typically productions are written like:

$$A
ightarrow \mathtt{a}B\mathtt{c}$$

Productions with common heads can be combined:

$$A \rightarrow a \mid Aa \mid bAb$$

 $\blacksquare S \in N \text{ is the start variable.}$

Context-Free Grammars

Notation: We use α, β, γ etc. to refer to sequences of terminals.

Definition (Derivations)

We make a *derivation step* $\alpha A\beta \Rightarrow_G \alpha \gamma\beta$ whenever $(A \rightarrow \gamma) \in P$. The language of a CFG *G* is:

$$\mathcal{L}(G) = \{ w \in \Sigma^* \mid S \Rightarrow^*_G w \}$$

Where \Rightarrow_G^* is the *reflexive transitive closure* of \Rightarrow_G .

Example

Given the CFG G:

$$G = (\{S\}, \{0, 1, \{S \to \varepsilon \mid 0S1\}, S)$$

What is the language of G?