Introduction to Theoretical Computer Science

Lecture 3: Beyond the Regular Languages

Dr. Liam O'Connor
University of Edinburgh
Semester 1, 2023/2024

Non-regular languages

What are some examples of non-regular languages?
Canonical examples: Matching parentheses,

$$
L_{1}=\left\{\mathrm{a}^{n} \mathrm{~b}^{n} \mid n \in \mathbb{N}\right\}, L_{2}=\left\{\mathrm{c}^{i} \mathrm{a}^{j} \mathrm{~b}^{k} \mid i=1 \Rightarrow j=k+1\right\}
$$

Intuition

Recognising L_{1} requires counting the number of as in the string, which is an unbounded natural number, which requires unbounded memory (not a finite amount of states).

How would we prove this?

Pumping

Suppose a DFA with k states accepts a word of length greater than k. What must have happened?
\Rightarrow The DFA must have visited a state more than once
\Rightarrow There is a loop.
Therefore, if we go through that loop any number of times, the DFA should accept those words also. We call this pumping.

The Pumping Lemma

Theorem (Pumping Lemma)

If $L \subseteq \Sigma^{*}$ is regular then there exists a pumping length $p \in \mathbb{N}$ such that for any $w \in L$ where $|w| \geq p$, we may split w into three pieces $w=x y z$ satisfying three conditions:
$1 x y^{i} z$ for all $i \in \mathbb{N}$,
$2|y|>0$, and
$3|x y| \leq p$.
The proof of this relies on the pigeonhole principle.
We can prove a language is non-regular by taking the contrapositive of this.

$$
\text { can't be pumped } \quad \Rightarrow \quad \text { not regular }
$$

Using the Pumping Lemma

To prove a negation (e.g. non-regularity), a common technique is to assume to the contrary that the proposition holds and show that it would lead to a contradiction.

Example (For L_{1})

Consider $L_{1}=\left\{\mathrm{a}^{n} \mathrm{~b}^{n} \mid n \in \mathbb{N}\right\}$. Assume to the contrary that L_{1} is regular and that p is its pumping length. We know $\mathrm{a}^{p} \mathrm{~b}^{p}$ is $\in L_{1}$. No matter how we split this word into $x y z$, none of these splits satisfies the three conditions of the Pumping Lemma.
Case y consists only of as: Then xyyz contains more as than bs, violating condition 1.
Case y contains bs: Then $|x y|>p$ violating condition 3.
Case y is empty (ε) : Then $|y|=0$ violating condition 2.

Another Non-Regular Language

Recall the language $L_{2}=\left\{\mathrm{c}^{i} \mathrm{a}^{j} \mathrm{~b}^{k} \mid i=1 \Rightarrow j=k+1\right\}$.

Definition

Define the left quotient of a language L, written $w \backslash L$ to be the set of suffixes that can be added to w to produce a word in L :

$$
w \backslash L=\{v \mid w v \in L\}
$$

Exercise: Prove that $w \backslash L$ is regular when L is regular.
Observe that $\mathrm{ca} \backslash L_{2}=\left\{\mathrm{a}^{n} \mathrm{~b}^{n} \mid n \in \mathbb{N}\right\}=L_{1}$, which is not regular. Therefore L_{2} is also not regular.

Limitations of the Pumping Lemma

We have seen that $L_{2}=\left\{c^{i} a^{j} \mathrm{~b}^{k} \mid i=1 \Rightarrow j=k+1\right\}$ is not regular, but it is possible to pump this.

Assume that L_{2} is regular and that p is its pumping length, and that $w \in L_{2}$ where $|w| \geq p$. We choose x, y (and implicitly z) based on the number of c 's in w, written C :
Case $C=0$: Choose $x=\varepsilon$ and $y=$ first letter of w
Case $0<C \leq 3$: Choose $x=\varepsilon$ and $y=c^{C}$
Case $C>3$: Choose $x=\varepsilon$ and $y=c c$
In each case, we can pump (i.e. repeat y arbitrarily many times and stay in L_{2}.)

So, the converse of the pumping lemma does not hold:

Beyond the Pumping Lemma

The pumping lemma is useful, but not satisfying, because it is not an exact characterisation.

Definition

Let $L \subseteq \Sigma^{*}$ and $x, y \in \Sigma^{*}$. If there exists a suffix string z such that $x z \in L$ but $y z \notin L$ (or vice-versa), then x and y are distinguishable by L.
If x and y are not distinguishable by L, we say $x \equiv_{L} y$. This is an equivalence relation.

The Myhill-Nerode Theorem

A language L is regular iff the number of \equiv_{L} equivalence classes is finite.
Proof Sketch if time allows.

Using Myhill-Nerode

To use Myhill-Nerode to show that L is non-regular, we must show that there are infinite \equiv_{L} equivalence classes.

In detail

More specifically, we find an infinite sequence $u_{0} u_{1} u_{2} \ldots$ of strings such that for any i and j (where $i \neq j$), there is a string $w_{i j}$ such that $u_{i} w_{i j} \in L$ but $u_{j} w_{i j} \notin L$ (or vice-versa).

Example

- $L_{1}=\left\{\mathrm{a}^{n} \mathrm{~b}^{n} \mid n \in \mathbb{N}\right\}$, choose $u_{i}=\mathrm{a}^{i}$ and $w_{i j}=\mathrm{b}^{i}$.

■ $L_{2}=\left\{c^{i} a^{j} \mathrm{~b}^{k} \mid i=1 \Rightarrow j=k+1\right\}$, choose $u_{i}=c a^{i+1}$ and $w_{i j}=b^{i}$.

Context-Free Languages

What would happen if we added recursion to regexps?

Definition

A Context-free grammar (CFG) is a 4-tuple (N, Σ, P, S) where:

- N is a finite set of variables or non-terminals,

■ Σ is a finite set of terminals

- $P \subseteq N \times(N \cup \Sigma)^{*}$ is a finite set of rules or productions.

Typically productions are written like:

$$
A \rightarrow \mathrm{aBc}
$$

Productions with common heads can be combined:

$$
A \rightarrow \mathrm{a}|A \mathrm{a}| \mathrm{b} A \mathrm{~b}
$$

■ $S \in N$ is the start variable.

Context-Free Grammars

Notation: We use α, β, γ etc. to refer to sequences of terminals.

Definition (Derivations)

We make a derivation step $\alpha A \beta \Rightarrow_{G} \alpha \gamma \beta$ whenever $(A \rightarrow \gamma) \in P$. The language of a CFG G is:

$$
\mathcal{L}(G)=\left\{w \in \Sigma^{*} \mid S \Rightarrow_{G}^{*} w\right\}
$$

Where \Rightarrow_{G}^{*} is the reflexive transitive closure of \Rightarrow_{G}.

Example

Given the CFG G :

$$
G=(\{S\},\{0,1,\{S \rightarrow \varepsilon \mid 0 S 1\}, S)
$$

What is the language of G ?

