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Semantics

This lecture concerns the topic of semantics, which is a
mathematical description of the meaning of programs.

Why learn this?
We can’t prove anything about a computer program without
first giving it a semantics.



Non-recursive semantics A programming language Domain theory

Semantics

This lecture concerns the topic of semantics, which is a
mathematical description of the meaning of programs.

Why learn this?
We can’t prove anything about a computer program without
first giving it a semantics.



Non-recursive semantics A programming language Domain theory

Semantics

Semantics can be specified in many ways:
1 Denotational Semantics is the compositional construction

of a mathematical object for each form of syntax. MCS

2 Axiomatic Semantics is the construction of a proof calculus
to allow correctness of a program to be verified. AR, FV

3 Operational Semantics is the construction of a
program-evaluating state machine or transition system.
TSPL, EPL, MCS

In this lecture
We focus mostly on denotational semantics as MCS’s
treatment is very informal and no other course touches it.
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Denotational Semantics

At its heart, it’s quite simple:

J·K : Program → Semantics

More specifically, we define a function J·K which maps syntax
into (mathematical) models.

Desideratum
We want this semantic function to be compositional: The
semantics of a compound expression should be made from the
semantics of its components.



Non-recursive semantics A programming language Domain theory

Denotational Semantics

At its heart, it’s quite simple:

J·K : Program → Semantics

More specifically, we define a function J·K which maps syntax
into (mathematical) models.

Desideratum
We want this semantic function to be compositional: The
semantics of a compound expression should be made from the
semantics of its components.



Non-recursive semantics A programming language Domain theory

Robot Example

Example (A Toy Language)
A robot moves along a grid according to a sequence of
commands move (forward 1 unit) and turn (90 degrees
counter-clockwise), separated by semicolons, with the
command sequence terminated by the keyword stop:

R ::= move; R | turn; R | stop

J·KR : R → Z2

Jturn; rKR =

(
0 −1
1 0

)
JrKR

Jmove; rKR = JrKR +

(
1
0

)
JstopKR =

(
0
0

)
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Arithmetic Expressions

J·KE : E →

JnKE =

JxKE =

Je1 + e2KE =

Je1 * e2KE =

Jlet x = e1 in e2KE =
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Arithmetic Expressions

J·KE : E → Σ → Z

Our denotation for arithmetic expressions is functions from
states (mapping from variables to their values) to values.

JnKE = λσ. n
JxKE = λσ. σ(x)
Je1 + e2KE = λσ.

Je1 * e2KE = λσ.

Jlet x = e1 in e2KE = λσ.



Non-recursive semantics A programming language Domain theory

Arithmetic Expressions

J·KE : E → Σ → Z

Our denotation for arithmetic expressions is functions from
states (mapping from variables to their values) to values.

JnKE = λσ. n
JxKE = λσ. σ(x)
Je1 + e2KE = λσ. Je1KE

σ +

Je2KE

σ

Je1 * e2KE = λσ. Je1KE

σ ×

Je2KE

σ

Jlet x = e1 in e2KE = λσ.



Non-recursive semantics A programming language Domain theory

Arithmetic Expressions

J·KE : E → Σ → Z

Our denotation for arithmetic expressions is functions from
states (mapping from variables to their values) to values.

JnKE = λσ. n
JxKE = λσ. σ(x)
Je1 + e2KE = λσ. Je1KEσ + Je2KEσ

Je1 * e2KE = λσ. Je1KEσ × Je2KEσ

Jlet x = e1 in e2KE = λσ.



Non-recursive semantics A programming language Domain theory

Arithmetic Expressions

J·KE : E → Σ → Z

Our denotation for arithmetic expressions is functions from
states (mapping from variables to their values) to values.

JnKE = λσ. n
JxKE = λσ. σ(x)
Je1 + e2KE = λσ. Je1KEσ + Je2KEσ

Je1 * e2KE = λσ. Je1KEσ × Je2KEσ

Jlet x = e1 in e2KE = λσ. Je2KE
(

σ[x := Je1KEσ]
)

Where σ[x := n] is a new state just like σ except the variable x
now maps to n.

Note: From this point onwards I’ll assume all standard arithmetic expressions are in E
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Boolean Expressions

J·KB : B →

Je1 == e2KB =

Je1 <= e2KB =

Je1 && e2KB =

Je1 || e2KB =

J! e1KB =
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Boolean Expressions

J·KB : B → P(Σ)

Je1 == e2KB = {σ | Je1KEσ = Je2KEσ}
Je1 <= e2KB =

Je1 && e2KB =

Je1 || e2KB =

J! e1KB =
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Boolean Expressions

J·KB : B → P(Σ)

Our denotation for a boolean expression is a set of states that
satisfy the predicate represented by the expression.

Je1 == e2KB = {σ | Je1KEσ = Je2KEσ}
Je1 <= e2KB = {σ | Je1KEσ ≤ Je2KEσ}
Je1 && e2KB =

Je1 || e2KB =

J! e1KB =
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Boolean Expressions

J·KB : B → P(Σ)

Our denotation for a boolean expression is a set of states that
satisfy the predicate represented by the expression.

Je1 == e2KB = {σ | Je1KEσ = Je2KEσ}
Je1 <= e2KB = {σ | Je1KEσ ≤ Je2KEσ}
Je1 && e2KB = Je1KB

∩

Je2KB

Je1 || e2KB = Je1KB

∪

Je2KB

J! e1KB =
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Boolean Expressions

J·KB : B → P(Σ)

Our denotation for a boolean expression is a set of states that
satisfy the predicate represented by the expression.

Je1 == e2KB = {σ | Je1KEσ = Je2KEσ}
Je1 <= e2KB = {σ | Je1KEσ ≤ Je2KEσ}
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Boolean Expressions

J·KB : B → P(Σ)

Our denotation for a boolean expression is a set of states that
satisfy the predicate represented by the expression.

Je1 == e2KB = {σ | Je1KEσ = Je2KEσ}
Je1 <= e2KB = {σ | Je1KEσ ≤ Je2KEσ}
Je1 && e2KB = Je1KB ∩ Je2KB

Je1 || e2KB = Je1KB ∪ Je2KB

J! e1KB = Σ \ Je1KB

Note: C notation is used here to distinguish syntax from semantics, but from this point
onwards I’ll assume all standard boolean expressions are in B
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Imperative Programs

We are going to give semantics to non-deterministic
imperative programs. Because of non-determinism, our
models are relations not functions:

J·K : I → P(Σ × Σ)

(σ1,σ2) ∈ JPK means that executing P on an initial state σ1
may result in the final state σ2.

Assignment statement
An assignment x := e simply assigns the value of the
expression e to the variable x :

Jx := eK =
{
(σi ,σf ) | σf = σi

[
x 7→ JeKE (σi )

]}
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More Statements

Sequencing
The semicolon, or sequential composition operator, is the
operator that lets us first run P , and then run Q.

JP;QK = JPK ; JQK

where ; is forward-composition of relations:

X ; Y =
{
(σi ,σf ) | ∃σm. (σi ,σm) ∈ X ∧ (σm,σf ) ∈ Y

}

Example (Swap)

({a 7→ 4, b 7→ 8, . . . }, {a 7→ 8, b 7→ 4, . . . })
∈ Jx := a; a := b; b := xK
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More Statements

Choice and Guards
An a nondeterministic choice P + Q means that all
observations of P and all observations of Q are possible:

JP + QK = JPK ∪ JQK

A boolean expression guard ϕ (in B) doesn’t change the state,
but only those observations that satisfy ϕ succeed:

JϕK =
{
(σ,σ) | σ ∈ JϕKB

}
Using these ingredients, we can recover if-statements:

if ϕ then P else Q fi ≃ (ϕ;P) + (¬ϕ;Q)
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Loops

the skip statement does nothing: JskipK = I = {(σ,σ) | σ ∈ Σ}

Star
The Kleene star P⋆ is the operator that runs loop body P for a
nondeterministic amount of times. The semantics are the
smallest solution to this recursive equation:

JP⋆K = I ∪ JPK ; JP⋆K (i.e. P⋆ ≃ skip + (P;P⋆) )

We will show that this is the same as:

JP⋆K =
⋃

i∈N0
JPKi

Where superscripting is self-composition: R0 = I
Rn+1 = R ; Rn

We can recover while loops: while g do P od ≃ (g ;P)⋆;¬g
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Great Scott!
Rewriting our equation slightly:

JP⋆K = f (JP⋆K) where f (X ) = I ∪ JPK ; X

A solution to this equation is a fixed point of the function f , i.e.,
a value x such that f (x) = x

1 Why does this equation have a solution?
2 If it has more than one solution, which one do we pick?

ω-cpos
We’ll put our models into a partial order ⊑, read
“approximates”, which is an ω-complete partial order:

1 Pointed: it has a least element ⊥ which approximates
everything.

2 ω-chain-complete: For every countable ascending
sequence f0 ⊑ f1 ⊑ f2 . . . we have a least upper bound,
written sup f or

⊔
n∈N fn.
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Examples of cpos

(P(S),⊆)

is a cpo: the LUB of a chain is just the union of
the chain.
(N,≤) is not a cpo: 1 ≤ 2 ≤ 3 ≤ . . . has no LUB.
(N ∪ {∞},≤) is a cpo, as ∞ is the LUB of any
non-repeating chain.
(S ,=)is a discrete domain, which is a cpo.
(S⊥,⊑), i.e., the set S extended with a single least
element ⊥is a flat domain, which is a cpo.

In our case
Our cpo is (P(Σ × Σ),⊆).

The least element ⊥ = ∅
The least upper bound of a chain f0 ⊆ f1 ⊆ f 2 . . . is just⋃

i∈N fi
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i∈N fi
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Climbing Chains
Recalling our semantics for the star operator, we want to show
that the least fixed point of a function f on our cpo is the least
upper bound of the ascending Kleene chain:

⊥ ⊑ f (⊥) ⊑ f (f (⊥)) ⊑ f 3(⊥) ⊑ f 4(⊥) ⊑ · · ·

But!
This chain doesn’t exist for some f ! Consider this f on the flat
domain (N⊥,⊑):

f (x) =


1 if x = ⊥
⊥ if x = 1
0 otherwise

Requiring that f is monotone fixes this problem, i.e.
a ≤ b =⇒ f (a) ≤ f (b). Why?
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Monotone isn’t enough

Consider this function f defined over a cpo (R ∪ {−∞,∞},≤):

f (x) =

{
tan−1 x if x < 0
1 otherwise

Note that this function is not continuous at 0.

Oh no
It has a fixed point of 1, but the chain approaches 0:

f (−∞) = −π
2

f (−π
2 ) = −1

f (−1) ≈ −0.78

But f (0) = 1 — the least upper bound of the ascending Kleene
chain is not the same as the least fixed point!
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Continuity

Definition
In a cpo (S ,⊑), a function f : S → S is (Scott)-continuous if, for
every chain x0 ⊑ x1 ⊑ x2 ⊑ . . . , f preserves the least upper
bound operator: ⊔

n∈N

f (xn) = f
( ⊔

n∈N

xn
)

Theorem
Every Scott-continuous function is monotone. Why?

Requiring Scott-continuity instead of just monotonicity gives
us the Kleene fixed point theorem...
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The Kleene fixed point theorem

Theorem
Let (S ,⊑) be a cpo and f : S → S be a Scott-continuous
function. Then the lub of the Kleene ascending chain⊔

n∈N f n(⊥) is the least fixed point of f .

Proof it is a fixed point:
f (
⊔

n∈N f n(⊥)) =
⊔

n∈N f (f n(⊥)) (continuity)

=
⊔

n∈N f n+1(⊥)

=
⊔

n=1,2... f
n(⊥) (reindexing)

= ⊥ ⊔
⊔

n=1,2... f
n(⊥)

=
⊔

n∈N f n(⊥)
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Proof of the FPT

Proof it is the least fixed point:

Let y be a fixed point of f . We know that ⊥ ⊑ y by definition of
⊥.

Taking f of both sides, we get f (⊥) ⊑ y . We can continue
this inductively and thus we know that, for all n ∈ N, f n(⊥) ⊑ y .
Because y is an upper bound of the Kleene ascending chain, it
must also be at least as large as the lub of that chain.
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Bringing it back to semantics

For our programming language, our cpo is (P(Σ × Σ),⊆):
The least element ⊥ = ∅
The least upper bound of a chain f0 ⊆ f1 ⊆ f 2 . . . is just⋃

i∈N fi

All of our composite operators are Scott-continuous:

JP + QK = JPK ∪ JQK JP;QK = JPK ; JQK

Thus, we know from the fixed point theorem that least
solutions to our recursive equations always exist and they can
be found by iteratively applying the function until we find a
fixed point.
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Non-termination

Consider a program that may loop forever, such as
(x := x + 1)⋆.

Problem
This possibility is not captured in our semantics!

Programs that definitely loop forever, like (x := x + 1)⋆; x = 0
have identical semantics to programs that always fail like
1 = 2.

Key idea
Add a special value, confusingly also written ⊥, which
represents non-terminating computations. Our models would
now be P(Σ × Σ⊥) where Σ⊥ is either a state or the special
“loop forever” value.
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Representing non-termination
The “loop forever” value must show up in the least element of
the cpo. Why?

If I have a recursive equation JRK = JRK, this ought to
represent looping forever.

Problem
Our ordering says the model is “greater” when we remove ⊥,
but “smaller” when we remove anything else, and vice versa.

It’s quite tricky to define this ordering such that it is a cpo and
such that our language operations are still continuous.

Further reading
Plotkin resolved this with his Powerdomain construction,
which gives a general treatment of non-determinism such that
any cpo can be lifted to a non-deterministic context.



Non-recursive semantics A programming language Domain theory

Representing non-termination
The “loop forever” value must show up in the least element of
the cpo. Why?
If I have a recursive equation JRK = JRK, this ought to
represent looping forever.

Problem
Our ordering says the model is “greater” when we remove ⊥,
but “smaller” when we remove anything else, and vice versa.

It’s quite tricky to define this ordering such that it is a cpo and
such that our language operations are still continuous.

Further reading
Plotkin resolved this with his Powerdomain construction,
which gives a general treatment of non-determinism such that
any cpo can be lifted to a non-deterministic context.



Non-recursive semantics A programming language Domain theory

Representing non-termination
The “loop forever” value must show up in the least element of
the cpo. Why?
If I have a recursive equation JRK = JRK, this ought to
represent looping forever.

Problem
Our ordering says the model is “greater” when we remove ⊥,
but “smaller” when we remove anything else, and vice versa.

It’s quite tricky to define this ordering such that it is a cpo and
such that our language operations are still continuous.

Further reading
Plotkin resolved this with his Powerdomain construction,
which gives a general treatment of non-determinism such that
any cpo can be lifted to a non-deterministic context.



Non-recursive semantics A programming language Domain theory

Representing non-termination
The “loop forever” value must show up in the least element of
the cpo. Why?
If I have a recursive equation JRK = JRK, this ought to
represent looping forever.

Problem
Our ordering says the model is “greater” when we remove ⊥,
but “smaller” when we remove anything else, and vice versa.

It’s quite tricky to define this ordering such that it is a cpo and
such that our language operations are still continuous.

Further reading
Plotkin resolved this with his Powerdomain construction,
which gives a general treatment of non-determinism such that
any cpo can be lifted to a non-deterministic context.



Non-recursive semantics A programming language Domain theory

Common Theorems

It is typical to define both operational and denotational models
for the same language and then prove theorems that relate
them.

Definition
Let (σ,P) ⇓ σ′ be an operational semantics for our language. It
says that, starting in state σ, evaluating the program P on a
machine results in σ′.

Soundness If (σ,P) ⇓ σ′ then (σ,σ′) ∈ JPK
Adequacy If (σ,σ′) ∈ JPK then (σ,P) ⇓ σ′

Full Abstraction JPK = JQK iff for all contexts C and
states σ and σ′, (σ,C [P]) ⇓ σ′ ⇔ (σ,C [Q]) ⇓ σ′

The first two are common. The last one is hard.
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More on denotations

This is just the tip of the iceberg in Denotational Semantics.
Effectful programs use Kleisli categories (monads) for
their domain
Categorical semantics which use structures from category
theory for denotations.
Game semantics which use games as denotations.
Probabilistic powerdomains and quasi-Borel spaces for
probablistic programs.
Concurrency semantics using traces, transition systems,
event structures, Petri nets and so on. MCS
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Farewell

Best of luck with your exams and the rest of your life! Please
feel free to reach out if you’re interested in learning more
theory.
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