
Log Space Complexity

Introduction to Theoretical Computer
Science

Lecture 16: The Rest of Space Complexity

Dr. Liam O’Connor
LFCS, University of Edinburgh

CECS, Australian National University
Semester 1, 2023/2024

Log Space Complexity

Logarithmic Space

Definition

L = SPACE(log n) NL = NSPACE(log n)

where SPACE(f (n)) (resp. NSPACE(f (n))) are the classes of
problems decidable in f (n)-bounded space by a deterministic (resp.
non-deterministic) Turing machine.

How can a Turing machine have a sublinear space bound?

Revised Bounded Turing Machine
Define a f (n)-space-bounded Turing machine with two tapes:

1 the input tape is read-only, and just contains the input of
size n.

2 the working tape, which is read-write and bounded by f (n).

Log Space Complexity

Logarithmic Space

Definition

L = SPACE(log n) NL = NSPACE(log n)

where SPACE(f (n)) (resp. NSPACE(f (n))) are the classes of
problems decidable in f (n)-bounded space by a deterministic (resp.
non-deterministic) Turing machine.

How can a Turing machine have a sublinear space bound?

Revised Bounded Turing Machine
Define a f (n)-space-bounded Turing machine with two tapes:

1 the input tape is read-only, and just contains the input of
size n.

2 the working tape, which is read-write and bounded by f (n).

Log Space Complexity

Logarithmic Space

Definition

L = SPACE(log n) NL = NSPACE(log n)

where SPACE(f (n)) (resp. NSPACE(f (n))) are the classes of
problems decidable in f (n)-bounded space by a deterministic (resp.
non-deterministic) Turing machine.

How can a Turing machine have a sublinear space bound?

Revised Bounded Turing Machine
Define a f (n)-space-bounded Turing machine with two tapes:

1 the input tape is read-only, and just contains the input of
size n.

2 the working tape, which is read-write and bounded by f (n).

Log Space Complexity

Problems in L

Example
{0k1k | k ∈ N} ∈ L Why?

Example
PATH = {⟨G , s, t⟩ | t reachable from s in directed graph G} ∈ P

Is it in L?
We don’t know.
Undirected version is in L (Reingold 2005), but the proof
is not easy (because SL = L).
What about NL?

Log Space Complexity

Problems in L

Example
{0k1k | k ∈ N} ∈ L Why?

Example
PATH = {⟨G , s, t⟩ | t reachable from s in directed graph G} ∈ P

Is it in L?

We don’t know.
Undirected version is in L (Reingold 2005), but the proof
is not easy (because SL = L).
What about NL?

Log Space Complexity

Problems in L

Example
{0k1k | k ∈ N} ∈ L Why?

Example
PATH = {⟨G , s, t⟩ | t reachable from s in directed graph G} ∈ P

Is it in L?
We don’t know.

Undirected version is in L (Reingold 2005), but the proof
is not easy (because SL = L).
What about NL?

Log Space Complexity

Problems in L

Example
{0k1k | k ∈ N} ∈ L Why?

Example
PATH = {⟨G , s, t⟩ | t reachable from s in directed graph G} ∈ P

Is it in L?
We don’t know.
Undirected version is in L (Reingold 2005), but the proof
is not easy (because SL = L).
What about NL?

Log Space Complexity

Problems in NL

PATH ∈ NL
On input ⟨(V ,E), s, t⟩:

1 store v ← s on the working tape
2 repeat up to |V | − 1 times:
3 nondeterministically ‘guess’ v ′ where (v , v ′) ∈ E
4 if v ′ = t accept, else set v ← v ′

5 reject

Why is this in NL?

Question
L ⊆ NL, but is NL ⊆ L? We don’t know.

Log Space Complexity

Problems in NL

PATH ∈ NL
On input ⟨(V ,E), s, t⟩:

1 store v ← s on the working tape
2 repeat up to |V | − 1 times:
3 nondeterministically ‘guess’ v ′ where (v , v ′) ∈ E
4 if v ′ = t accept, else set v ← v ′

5 reject

Why is this in NL?

Question
L ⊆ NL, but is NL ⊆ L? We don’t know.

Log Space Complexity

Problems in NL

PATH ∈ NL
On input ⟨(V ,E), s, t⟩:

1 store v ← s on the working tape
2 repeat up to |V | − 1 times:
3 nondeterministically ‘guess’ v ′ where (v , v ′) ∈ E
4 if v ′ = t accept, else set v ← v ′

5 reject

Why is this in NL?

Question
L ⊆ NL, but is NL ⊆ L? We don’t know.

Log Space Complexity

Log-space transducers

Definition
A log-space transducer is a Turing machine with three tapes:

1 The input tape, which is read-only.
2 The working tape, which is read-write and log-bounded.
3 The output tape, which is write-only.

A log-space reduction is a reduction computable by a
log-space transducer.

Log Space Complexity

Hardness

Definition
A problem P1 is log-space reducible to P2, written P1 ≤L P2, if
there is a log-space reduction from P1 to P2.

Recall:
To prove that a problem P2 is hard, show that there is an easy
reduction from a known hard problem P1 to P2.

Definition
A problem P is NL-Hard if, for every A ∈ NL, A ≤L P

If a problem P1 is NL-hard and P1 ≤P P2 then P2 is
NL-Hard.
To prove that a problem P2 is NL-hard, show that there’s a
log-space reduction from a known NL-hard P1 to P2.

Log Space Complexity

Hardness

Definition
A problem P1 is log-space reducible to P2, written P1 ≤L P2, if
there is a log-space reduction from P1 to P2.

Recall:
To prove that a problem P2 is hard, show that there is an easy
reduction from a known hard problem P1 to P2.

Definition
A problem P is NL-Hard if, for every A ∈ NL, A ≤L P

If a problem P1 is NL-hard and P1 ≤P P2 then P2 is
NL-Hard.
To prove that a problem P2 is NL-hard, show that there’s a
log-space reduction from a known NL-hard P1 to P2.

Log Space Complexity

Hardness

Definition
A problem P1 is log-space reducible to P2, written P1 ≤L P2, if
there is a log-space reduction from P1 to P2.

Recall:
To prove that a problem P2 is hard, show that there is an easy
reduction from a known hard problem P1 to P2.

Definition
A problem P is NL-Hard if, for every A ∈ NL, A ≤L P

If a problem P1 is NL-hard and P1 ≤P P2 then P2 is
NL-Hard.
To prove that a problem P2 is NL-hard, show that there’s a
log-space reduction from a known NL-hard P1 to P2.

Log Space Complexity

Completeness

Question
If any NL-hard problem is shown to be L, what does that mean?

Definition
A problem is NL-complete if it is both NL-hard and in NL.

Example
PATH is NL-complete.

We already know PATH ∈ NL.
Why is it NL-hard?

Log Space Complexity

Completeness

Question
If any NL-hard problem is shown to be L, what does that mean?

Definition
A problem is NL-complete if it is both NL-hard and in NL.

Example
PATH is NL-complete.

We already know PATH ∈ NL.
Why is it NL-hard?

Log Space Complexity

NL-hardness of PATH

Let P ∈ NL. Given a nondeterministic log-space Turing
machine M that computes P , we:

1 Construct a control-flow graph G of all the reachable
configurations of M for the given input.

2 Ask if there is a PATH from the start configuration s to the
accept configuration t1.

The transducer needs only log space on the working tape to
produce the graph on the output tape.

Thus..
As PATH ∈ NL and PATH is NL-hard, PATH is NL-complete.

Because PATH ∈ P, we conclude L ⊆ NL ⊆ P!

1W.l.o.g. we say there is just one accepting configuration.

Log Space Complexity

NL-hardness of PATH

Let P ∈ NL. Given a nondeterministic log-space Turing
machine M that computes P , we:

1 Construct a control-flow graph G of all the reachable
configurations of M for the given input.

2 Ask if there is a PATH from the start configuration s to the
accept configuration t1.

The transducer needs only log space on the working tape to
produce the graph on the output tape.

Thus..
As PATH ∈ NL and PATH is NL-hard, PATH is NL-complete.

Because PATH ∈ P, we conclude L ⊆ NL ⊆ P!

1W.l.o.g. we say there is just one accepting configuration.

Log Space Complexity

NL-hardness of PATH

Let P ∈ NL. Given a nondeterministic log-space Turing
machine M that computes P , we:

1 Construct a control-flow graph G of all the reachable
configurations of M for the given input.

2 Ask if there is a PATH from the start configuration s to the
accept configuration t1.

The transducer needs only log space on the working tape to
produce the graph on the output tape.

Thus..
As PATH ∈ NL and PATH is NL-hard, PATH is NL-complete.

Because PATH ∈ P, we conclude L ⊆ NL ⊆ P!

1W.l.o.g. we say there is just one accepting configuration.

Log Space Complexity

NL-hardness of PATH

Let P ∈ NL. Given a nondeterministic log-space Turing
machine M that computes P , we:

1 Construct a control-flow graph G of all the reachable
configurations of M for the given input.

2 Ask if there is a PATH from the start configuration s to the
accept configuration t1.

The transducer needs only log space on the working tape to
produce the graph on the output tape.

Thus..
As PATH ∈ NL and PATH is NL-hard, PATH is NL-complete.

Because PATH ∈ P, we conclude L ⊆ NL ⊆ P!

1W.l.o.g. we say there is just one accepting configuration.

Log Space Complexity

NL-hardness of PATH

Let P ∈ NL. Given a nondeterministic log-space Turing
machine M that computes P , we:

1 Construct a control-flow graph G of all the reachable
configurations of M for the given input.

2 Ask if there is a PATH from the start configuration s to the
accept configuration t1.

The transducer needs only log space on the working tape to
produce the graph on the output tape.

Thus..
As PATH ∈ NL and PATH is NL-hard, PATH is NL-complete.

Because PATH ∈ P, we conclude L ⊆ NL ⊆ P!

1W.l.o.g. we say there is just one accepting configuration.

Log Space Complexity

L vs NL
We hypothesise that we pay an exponential time penalty when
we simulate nondeterministic machines with deterministic
ones, but what about space?

Note: We don’t know that NL ⊈ L, so it’s possible there’s no
penalty.

Savitch’s Theorem
Define a recursive algorithm kpath(s, t, k) that returns true iff
there is a path of length k from s to t in a graph G = (V ,E).

If k = 0, return s = t.
If k = 1, return (s, t) ∈ E .
If k > 1, for each u ∈ V :
▶ If kpath(s, u, ⌊k2 ⌋) ∧ kpath(u, t, ⌈k2 ⌉), return true.

kpath can compute PATH in log2(|G |) space, so NL ⊆ L2. In
general NSPACE(f (n)) ⊆ SPACE(f 2(n)).

Log Space Complexity

L vs NL
We hypothesise that we pay an exponential time penalty when
we simulate nondeterministic machines with deterministic
ones, but what about space?
Note: We don’t know that NL ⊈ L, so it’s possible there’s no
penalty.

Savitch’s Theorem
Define a recursive algorithm kpath(s, t, k) that returns true iff
there is a path of length k from s to t in a graph G = (V ,E).

If k = 0, return s = t.
If k = 1, return (s, t) ∈ E .
If k > 1, for each u ∈ V :
▶ If kpath(s, u, ⌊k2 ⌋) ∧ kpath(u, t, ⌈k2 ⌉), return true.

kpath can compute PATH in log2(|G |) space, so NL ⊆ L2. In
general NSPACE(f (n)) ⊆ SPACE(f 2(n)).

Log Space Complexity

L vs NL
We hypothesise that we pay an exponential time penalty when
we simulate nondeterministic machines with deterministic
ones, but what about space?
Note: We don’t know that NL ⊈ L, so it’s possible there’s no
penalty.

Savitch’s Theorem
Define a recursive algorithm kpath(s, t, k) that returns true iff
there is a path of length k from s to t in a graph G = (V ,E).

If k = 0, return s = t.
If k = 1, return (s, t) ∈ E .
If k > 1, for each u ∈ V :
▶ If kpath(s, u, ⌊k2 ⌋) ∧ kpath(u, t, ⌈k2 ⌉), return true.

kpath can compute PATH in log2(|G |) space, so NL ⊆ L2. In
general NSPACE(f (n)) ⊆ SPACE(f 2(n)).

Log Space Complexity

L vs NL
We hypothesise that we pay an exponential time penalty when
we simulate nondeterministic machines with deterministic
ones, but what about space?
Note: We don’t know that NL ⊈ L, so it’s possible there’s no
penalty.

Savitch’s Theorem
Define a recursive algorithm kpath(s, t, k) that returns true iff
there is a path of length k from s to t in a graph G = (V ,E).

If k = 0, return s = t.
If k = 1, return (s, t) ∈ E .
If k > 1, for each u ∈ V :
▶ If kpath(s, u, ⌊k2 ⌋) ∧ kpath(u, t, ⌈k2 ⌉), return true.

kpath can compute PATH in log2(|G |) space, so NL ⊆ L2. In
general NSPACE(f (n)) ⊆ SPACE(f 2(n)).

Log Space Complexity

Certificates

Just as with NP, we can also characterise NL in terms of a
verifier for certificates (candidate solutions):

Theorem
A problem P ∈ NL iff there is a log-space verifier for
P-certificates.
A log-space verifier has three tapes:

1 A input tape that is read-only.
2 A working tape that is log-bounded.
3 A certificate tape that is read-once (left to right).

The size of the certificate we are verifying must be polynomial
in the size of the input.

Exercise: Show that this is equivalent to our NSPACE
definition previously.

Log Space Complexity

Certificates

Just as with NP, we can also characterise NL in terms of a
verifier for certificates (candidate solutions):

Theorem
A problem P ∈ NL iff there is a log-space verifier for
P-certificates.
A log-space verifier has three tapes:

1 A input tape that is read-only.
2 A working tape that is log-bounded.
3 A certificate tape that is read-once (left to right).

The size of the certificate we are verifying must be polynomial
in the size of the input.

Exercise: Show that this is equivalent to our NSPACE
definition previously.

Log Space Complexity

Certificates

Just as with NP, we can also characterise NL in terms of a
verifier for certificates (candidate solutions):

Theorem
A problem P ∈ NL iff there is a log-space verifier for
P-certificates.
A log-space verifier has three tapes:

1 A input tape that is read-only.
2 A working tape that is log-bounded.
3 A certificate tape that is read-once (left to right).

The size of the certificate we are verifying must be polynomial
in the size of the input.

Exercise: Show that this is equivalent to our NSPACE
definition previously.

Log Space Complexity

PATH ∈ NL

Example
A certificate for PATH is a list of vertices v0, v1, . . . , vk forming
an acyclic path from s to t in a graph G = (V ,E). We can check
with a log-space verifier that:

s = v0

vk = t
(vj , vj+1) ∈ E for all 0 ≤ j < k

We only read the certificate once, left to right, and it suffices to
store two nodes in our working tape, so this is log space†.

†Node names can be binary digits

Log Space Complexity

PATH ∈ NL

Example
A certificate for PATH is a list of vertices v0, v1, . . . , vk forming
an acyclic path from s to t in a graph G = (V ,E). We can check
with a log-space verifier that:

s = v0

vk = t
(vj , vj+1) ∈ E for all 0 ≤ j < k

We only read the certificate once, left to right, and it suffices to
store two nodes in our working tape, so this is log space†.

†Node names can be binary digits

Log Space Complexity

NL vs coNL

coNL is all problems whose complement is in NL.

Immerman-Szelepcsényi Theorem

NL = coNL

More generally:

NSPACE(f (x)) = coNSPACE(f (x))

Thus:

PSPACE = coPSPACE

Log Space Complexity

Proof of Immerman-Szelepcsényi
We prove this by showing PATH ∈ NL.

Intuition
Say I want to convince you (a verifier) that in a graph
G = (V ,E), there is no path from s to t. I can do this by
convincing you of the following two statements:

1 There are exactly m|V | distinct vertices reachable from s
by paths of length ≤ |V |.

2 The target vertex t is not one of those m|V | vertices.

So, what are the certificates?
For Part 2, we just give a list of m|V | distinct vertices that
are not t, along with a certificate for each vertex v in our
list that v is reachable from s by paths of length ≤ |V |
For Part 1, we do inductive counting...

Log Space Complexity

Proof of Immerman-Szelepcsényi
We prove this by showing PATH ∈ NL.

Intuition
Say I want to convince you (a verifier) that in a graph
G = (V ,E), there is no path from s to t. I can do this by
convincing you of the following two statements:

1 There are exactly m|V | distinct vertices reachable from s
by paths of length ≤ |V |.

2 The target vertex t is not one of those m|V | vertices.

So, what are the certificates?
For Part 2, we just give a list of m|V | distinct vertices that
are not t, along with a certificate for each vertex v in our
list that v is reachable from s by paths of length ≤ |V |
For Part 1, we do inductive counting...

Log Space Complexity

Proof of Immerman-Szelepcsényi
We prove this by showing PATH ∈ NL.

Intuition
Say I want to convince you (a verifier) that in a graph
G = (V ,E), there is no path from s to t. I can do this by
convincing you of the following two statements:

1 There are exactly m|V | distinct vertices reachable from s
by paths of length ≤ |V |.

2 The target vertex t is not one of those m|V | vertices.

So, what are the certificates?

For Part 2, we just give a list of m|V | distinct vertices that
are not t, along with a certificate for each vertex v in our
list that v is reachable from s by paths of length ≤ |V |
For Part 1, we do inductive counting...

Log Space Complexity

Proof of Immerman-Szelepcsényi
We prove this by showing PATH ∈ NL.

Intuition
Say I want to convince you (a verifier) that in a graph
G = (V ,E), there is no path from s to t. I can do this by
convincing you of the following two statements:

1 There are exactly m|V | distinct vertices reachable from s
by paths of length ≤ |V |.

2 The target vertex t is not one of those m|V | vertices.

So, what are the certificates?
For Part 2, we just give a list of m|V | distinct vertices that
are not t, along with a certificate for each vertex v in our
list that v is reachable from s by paths of length ≤ |V |

For Part 1, we do inductive counting...

Log Space Complexity

Proof of Immerman-Szelepcsényi
We prove this by showing PATH ∈ NL.

Intuition
Say I want to convince you (a verifier) that in a graph
G = (V ,E), there is no path from s to t. I can do this by
convincing you of the following two statements:

1 There are exactly m|V | distinct vertices reachable from s
by paths of length ≤ |V |.

2 The target vertex t is not one of those m|V | vertices.

So, what are the certificates?
For Part 2, we just give a list of m|V | distinct vertices that
are not t, along with a certificate for each vertex v in our
list that v is reachable from s by paths of length ≤ |V |
For Part 1, we do inductive counting...

Log Space Complexity

Inductive Counting

I want to convince you (the verifier) of the following:

Certify this:
There are exactly m|V | distinct vertices reachable from s by
paths of length ≤ |V |.

To do this, I’ll make an inductive argument:

Steps
For each k = 0, . . . , |V | − 1, I’ll show you (the verifier) that:
“if mk vertices are reachable by paths of length ≤ k ,
then mk+1 vertices are reachable by paths of length ≤ k + 1.”

Log Space Complexity

Sub-certificates

Steps
For each k = 0, . . . , |V | − 1, I’ll show you (the verifier) that:
“if mk vertices are reachable by paths of length ≤ k ,
then mk+1 vertices are reachable by paths of length ≤ k + 1.”

The certificate for each step takes the form of a sub-certificate
for each vertex v ∈ V :

If v is reachable by paths of length ≤ k + 1, then it is just a
path from s to v of length ≤ k + 1
If v is not reachable by paths of length ≤ k + 1, then it is a
list of mk distinct vertices that do not have an edge to v ,
and a certificate for each vertex v ′ in our list that v ′ is
reachable from s by paths of length ≤ k .

There should be exactly mk+1 “reachable” sub-certificates
(our verifier will check this).

Log Space Complexity

Sub-certificates

Steps
For each k = 0, . . . , |V | − 1, I’ll show you (the verifier) that:
“if mk vertices are reachable by paths of length ≤ k ,
then mk+1 vertices are reachable by paths of length ≤ k + 1.”

The certificate for each step takes the form of a sub-certificate
for each vertex v ∈ V :

If v is reachable by paths of length ≤ k + 1, then it is just a
path from s to v of length ≤ k + 1

If v is not reachable by paths of length ≤ k + 1, then it is a
list of mk distinct vertices that do not have an edge to v ,
and a certificate for each vertex v ′ in our list that v ′ is
reachable from s by paths of length ≤ k .

There should be exactly mk+1 “reachable” sub-certificates
(our verifier will check this).

Log Space Complexity

Sub-certificates

Steps
For each k = 0, . . . , |V | − 1, I’ll show you (the verifier) that:
“if mk vertices are reachable by paths of length ≤ k ,
then mk+1 vertices are reachable by paths of length ≤ k + 1.”

The certificate for each step takes the form of a sub-certificate
for each vertex v ∈ V :

If v is reachable by paths of length ≤ k + 1, then it is just a
path from s to v of length ≤ k + 1
If v is not reachable by paths of length ≤ k + 1, then it is a
list of mk distinct vertices that do not have an edge to v ,
and a certificate for each vertex v ′ in our list that v ′ is
reachable from s by paths of length ≤ k .

There should be exactly mk+1 “reachable” sub-certificates
(our verifier will check this).

Log Space Complexity

Sub-certificates

Steps
For each k = 0, . . . , |V | − 1, I’ll show you (the verifier) that:
“if mk vertices are reachable by paths of length ≤ k ,
then mk+1 vertices are reachable by paths of length ≤ k + 1.”

The certificate for each step takes the form of a sub-certificate
for each vertex v ∈ V :

If v is reachable by paths of length ≤ k + 1, then it is just a
path from s to v of length ≤ k + 1
If v is not reachable by paths of length ≤ k + 1, then it is a
list of mk distinct vertices that do not have an edge to v ,
and a certificate for each vertex v ′ in our list that v ′ is
reachable from s by paths of length ≤ k .

There should be exactly mk+1 “reachable” sub-certificates
(our verifier will check this).

Log Space Complexity

Sub-polynomiality
We have a finer-grained notion of reduction now, so we can
make distinctions smaller than P:

P-Completeness
A problem is P-complete iff it is in P and all problems in P can
be log-space reduced to it.
Examples: Emptiness of CFGs, True Boolean Circuit Value, etc.

Logarithmic Hierarchy
We can imagine a logarithmic hierarchy like the polynomial
hierarchy, i.e. the languages decided by an alternating Turing
machine in logarithmic space with a bounded number of
alternations.
By Immerman-Szelepcsényi, the hierarchy collapses, i.e.
ΣL

j = NL for all j . But for unbounded alternations, AL = P.

Log Space Complexity

Sub-polynomiality
We have a finer-grained notion of reduction now, so we can
make distinctions smaller than P:

P-Completeness
A problem is P-complete iff it is in P and all problems in P can
be log-space reduced to it.
Examples: Emptiness of CFGs, True Boolean Circuit Value, etc.

Logarithmic Hierarchy
We can imagine a logarithmic hierarchy like the polynomial
hierarchy, i.e. the languages decided by an alternating Turing
machine in logarithmic space with a bounded number of
alternations.
By Immerman-Szelepcsényi, the hierarchy collapses, i.e.
ΣL

j = NL for all j . But for unbounded alternations, AL = P.

Log Space Complexity

Sub-polynomiality
We have a finer-grained notion of reduction now, so we can
make distinctions smaller than P:

P-Completeness
A problem is P-complete iff it is in P and all problems in P can
be log-space reduced to it.
Examples: Emptiness of CFGs, True Boolean Circuit Value, etc.

Logarithmic Hierarchy
We can imagine a logarithmic hierarchy like the polynomial
hierarchy, i.e. the languages decided by an alternating Turing
machine in logarithmic space with a bounded number of
alternations.

By Immerman-Szelepcsényi, the hierarchy collapses, i.e.
ΣL

j = NL for all j . But for unbounded alternations, AL = P.

Log Space Complexity

Sub-polynomiality
We have a finer-grained notion of reduction now, so we can
make distinctions smaller than P:

P-Completeness
A problem is P-complete iff it is in P and all problems in P can
be log-space reduced to it.
Examples: Emptiness of CFGs, True Boolean Circuit Value, etc.

Logarithmic Hierarchy
We can imagine a logarithmic hierarchy like the polynomial
hierarchy, i.e. the languages decided by an alternating Turing
machine in logarithmic space with a bounded number of
alternations.
By Immerman-Szelepcsényi, the hierarchy collapses, i.e.
ΣL

j = NL for all j .

But for unbounded alternations, AL = P.

Log Space Complexity

Sub-polynomiality
We have a finer-grained notion of reduction now, so we can
make distinctions smaller than P:

P-Completeness
A problem is P-complete iff it is in P and all problems in P can
be log-space reduced to it.
Examples: Emptiness of CFGs, True Boolean Circuit Value, etc.

Logarithmic Hierarchy
We can imagine a logarithmic hierarchy like the polynomial
hierarchy, i.e. the languages decided by an alternating Turing
machine in logarithmic space with a bounded number of
alternations.
By Immerman-Szelepcsényi, the hierarchy collapses, i.e.
ΣL

j = NL for all j . But for unbounded alternations, AL = P.

	Log Space Complexity

