
Recursion in λ-Calculus Type Theory

Introduction to Theoretical Computer
Science

Lecture 15: Recursion and Typed λ-Calculus

Dr. Liam O’Connor
University of Edinburgh
Semester 1, 2023/2024

Recursion in λ-Calculus Type Theory

Puzzle

Puzzle
Find a λ-term Y such that

Y f 7→⋆
β

f (Y f)

Can you use this to define recursive functions? e.g. factorial?

Recursion in λ-Calculus Type Theory

The Y Combinator
The term we’re looking for is called a fixed point combinator.
And they’re the way we achieve recursion in the λ-calculus.

Example (Recursive functions)
Exercise: Assuming a definition for Y , as well as If,Equal,Add
and Suc, define a recursive function to compute the sum of
every natural number from a given a to a given b.

0 To find Y , we can draw inspiration from our previous
diverging example:

(λx . (x x)) (λx . (x x))

and define Y as follows:

Y ≡ (λf . (λx . f (x x)) (λx . f (x x)))

Exercise: Let’s demonstrate that Y g ≡β g (Y g)

Recursion in λ-Calculus Type Theory

Higher Order Logic
Originally, λ-calculus was intended for use as a term language
for a logic, called higher-order logic. The existence of terms
like Y poses a problem for this, as, for example:

Y ¬ ≡β ¬ (Y ¬)

It certainly isn’t good to have a logical term that is equal to its
own negation! Church solves this with types.

Adding Types

Fix a set of base types (nat, bool, etc.)
If σ and τ are types, then σ → τ is a type of a function from
σ to τ. Like Haskell, it is right-associative:
σ → τ → ρ = σ → (τ → ρ)

A λ-abstraction now additionally specifies the type of the
parameter: λx : τ. t

Recursion in λ-Calculus Type Theory

Natural Deduction

Logic and Types
We can specify a logical system as a deductive system by
providing a set of rules and axioms that describe how to prove
various connectives. We can specify typing the same way!

For example, to prove a λ-abstraction λx : σ. t has type σ → τ,
we must show that the function body t has type τ assuming x
has type σ. This rule is written as:

x : σ,Γ ⊢ t : τ

Γ ⊢ (λx : σ. t) : σ → τ
→I

derivability
(if the top, then the bottom)

entailment
(assuming the left, we

can prove the right)

Recursion in λ-Calculus Type Theory

Typing
The full set of rules for the simply typed λ-calculus is as
follows:

x : τ ∈ Γ

Γ ⊢ x : τ
A

x : σ,Γ ⊢ t : τ

Γ ⊢ (λx : σ. t) : σ → τ
→I

Γ ⊢ t : σ → τ Γ ⊢ u : σ

Γ ⊢ t u : τ
→E

Example (Typing)

By drawing a proof tree, and assuming Add has type
nat → nat → nat, show that (λx : nat. Add x x) has type
nat → nat

Show that our non-terminating term (λx . x x)(λx . x x)
cannot be typed. Similarly show that Y cannot be typed.

Recursion in λ-Calculus Type Theory

Some Results

Uniqueness of types In a given context (types for free
variables), any simply typed λ-terms has at most
one type. Deciding this is in P.

Subject reduction (type safety) Typing respects ≡αβη, i.e.
reduction does not affect a term’s type.

Strong normalisation Any well-typed term evaluates in
finitely many reductions to a unique irreducible
term. If the type is a base type, this term is a
constant.

We lost recursion!
We have seen that Y cannot be typed, and strong
normalisation means that no such combinator could exist in
simply typed λ-calculus.

Recursion in λ-Calculus Type Theory

Adding recursion back in
If we want to do general computation in our λ-calculus, we
need recursion back. So, we just extend the typed λ-calculus
with a new built-in feature, called fix:

Γ ⊢ t : τ → τ

Γ ⊢ fix t : τ

And we extend β-reduction to unroll our recursion one step:

fix (λx : τ. t) 7→β t[fix (λx :τ. t)/x]

Now we can use fix as we used Y in our untyped setting.

Total Programming
Some type-theoretic languages (Agda, Idris) avoid adding
general recursion to their underlying λ-calculus. Let’s talk
about why they did that!

Recursion in λ-Calculus Type Theory

Product Types

Lets extend our simple lambda calculus with some other
composite types, such as product types or tuples:

τ1 × τ2
We won’t have type declarations, named fields or anything like
that. More than two values can be combined by nesting
products, for example a three dimensional vector:

nat× (nat× nat)

Recursion in λ-Calculus Type Theory

Constructors and Eliminators

We can construct a product type similarly to Haskell tuples:

Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ2

Γ ⊢ (e1, e2) : τ1 × τ2
×I

The only way to extract each component of the product is to
use the fst and snd eliminators:

Γ ⊢ e : τ1 × τ2

Γ ⊢ fst e : τ1
×E1

Γ ⊢ e : τ1 × τ2

Γ ⊢ snd e : τ2
×E2

Recursion in λ-Calculus Type Theory

Semantics

We extend our notion of β-reduction to describe how these
new built-in features evaluate:

fst (v1, v2) 7→β v1 snd (v1, v2) 7→β v2

Recursion in λ-Calculus Type Theory

Unit Types

Currently, we have no way to express a type with just one
value. This may seem useless at first, but it becomes useful in
combination with other types.
We’ll introduce a new base type, 1, pronounced unit, that has
exactly one inhabitant, written ():

Γ ⊢ () : 1
1I

Recursion in λ-Calculus Type Theory

Disjunctive Composition
We can’t, with just our product types, express a type with
exactly three values.

Example (Trivalued type)

data TrafficLight = Red | Amber | Green

In general we want to express data that can be one of multiple
alternatives, that contain different bits of data.

Example (More elaborate alternatives)
type Length = Int
type Angle = Int
data Shape = Rect Length Length

| Circle Length | Point
| Triangle Angle Length Length

Recursion in λ-Calculus Type Theory

Sum Types

We will use sum types to express the possibility that data may
be one of two forms.

τ1 + τ2
This is similar to the Haskell Either type.
Our TrafficLight type can be expressed (grotesquely) as a
sum of units:

TrafficLight ≃ 1 + (1 + 1)

Recursion in λ-Calculus Type Theory

Constructors and Eliminators for Sums

To make a value of type τ1 + τ2, we invoke one of two
constructors:

Γ ⊢ e : τ1

Γ ⊢ InL e : τ1 + τ2
+I1

Γ ⊢ e : τ2

Γ ⊢ InR e : τ1 + τ2
+I2

We can branch based on which alternative is used using
pattern matching:

Γ ⊢ e : τ1 + τ2 x : τ1,Γ ⊢ e1 : τ y : τ2,Γ ⊢ e2 : τ

Γ ⊢ (case e of InL x → e1; InR y → e2) : τ
+E

Recursion in λ-Calculus Type Theory

Examples

Example (Traffic Lights)
Our traffic light type has three values as required:

TrafficLight ≃ 1 + (1 + 1)

Red ≃ InL ()
Amber ≃ InR (InL ())
Green ≃ InR (InR ())

Recursion in λ-Calculus Type Theory

Semantics

(case (InL v) of InL x → e1; InR y → e2) 7→β e1[
v/x]

(case (InR v) of InL x → e1; InR y → e2) 7→β e2[
v/y]

Recursion in λ-Calculus Type Theory

The Empty Type

We add another type, called 0, that has no inhabitants.
Because it is empty, there is no way to construct it.
We do have a way to eliminate it, however:

Γ ⊢ e : 0
Γ ⊢ absurd e : τ

0E

If I have a variable of the empty type in scope, we must be
looking at an expression that will never be evaluated.
Therefore, we can assign any type we like to this expression,
because it will never be executed.

Recursion in λ-Calculus Type Theory

Examining our Types
Lets look at the rules for typed lambda calculus extended with
sums and products:

Γ ⊢ e : 0
Γ ⊢ absurd e : τ Γ ⊢ () : 1

Γ ⊢ e : τ1

Γ ⊢ InL e : τ1 + τ2

Γ ⊢ e : τ2

Γ ⊢ InR e : τ1 + τ2

Γ ⊢ e : τ1 + τ2 x : τ1,Γ ⊢ e1 : τ y : τ2,Γ ⊢ e2 : τ

Γ ⊢ (case e of InL x → e1; InR y → e2) : τ

Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ2

Γ ⊢ (e1, e2) : τ1 × τ2

Γ ⊢ e : τ1 × τ2

Γ ⊢ fst e : τ1

Γ ⊢ e : τ1 × τ2

Γ ⊢ snd e : τ2

Γ ⊢ e1 : τ1 → τ2 Γ ⊢ e2 : τ1

Γ ⊢ e1 e2 : τ2

x : τ1,Γ ⊢ e : τ2

Γ ⊢ λx . e : τ1 → τ2

Recursion in λ-Calculus Type Theory

Squinting a Little
Lets remove all the terms, leaving just the types and the
contexts:

Γ ⊢ 0
Γ ⊢ τ Γ ⊢ 1

Γ ⊢ τ1

Γ ⊢ τ1 + τ2

Γ ⊢ τ2

Γ ⊢ τ1 + τ2

Γ ⊢ τ1 + τ2 τ1,Γ ⊢ τ τ2,Γ ⊢ τ

Γ ⊢ τ

Γ ⊢ τ1 Γ ⊢ τ2

Γ ⊢ τ1 × τ2

Γ ⊢ τ1 × τ2

Γ ⊢ τ1

Γ ⊢ τ1 × τ2

Γ ⊢ τ2

Γ ⊢ τ1 → τ2 Γ ⊢ τ1

Γ ⊢ τ2

τ1,Γ ⊢ τ2

Γ ⊢ τ1 → τ2

Does this resemble anything you’ve seen before?

Recursion in λ-Calculus Type Theory

A surprising coincidence!
Types are exactly the same structure as intuitionistic logic:

Γ ⊢ ⊥
Γ ⊢ P Γ ⊢ ⊤

Γ ⊢ P1

Γ ⊢ P1 ∨ P2

Γ ⊢ P2

Γ ⊢ P1 ∨ P2

Γ ⊢ P1 ∨ P2 P1,Γ ⊢ P P2,Γ ⊢ P
Γ ⊢ P

Γ ⊢ P1 Γ ⊢ P2

Γ ⊢ P1 ∧ P2

Γ ⊢ P1 ∧ P2

Γ ⊢ P1

Γ ⊢ P1 ∧ P2

Γ ⊢ P2

Γ ⊢ P1 → P2 Γ ⊢ P1

Γ ⊢ P2

P1,Γ ⊢ P2

Γ ⊢ P1 → P2

This means, if we can construct a program of a certain type, we
have also created a constructive proof of a certain proposition.

Recursion in λ-Calculus Type Theory

The Curry-Howard Correspondence
This correspondence goes by many names, but is usually
attributed to Haskell Curry and William Howard.
It is a very deep result:

Programming Logic
Types Propositions

Programs Proofs
Evaluation Proof Simplification

It turns out, no matter what logic you want to define, there is
always a corresponding λ-calculus, and vice versa.

Constructive Logic Typed λ-Calculus
Classical Logic Continuations

Modal Logic Monads
Linear Logic Linear Types, Session Types

Separation Logic Region Types

Recursion in λ-Calculus Type Theory

Examples

Example (Commutativity of Conjunction)

andComm : A × B → B × A
andComm = λp. (snd p, fst p)

This proves A ∧ B → B ∧ A.

Example (Transitivity of Implication)

transitive : (A → B) → (B → C) → (A → C)
transitive = λf λg λx . g (f x)

Transitivity of implication is just function composition.

Recursion in λ-Calculus Type Theory

Caveats
All functions we define have to be total and terminating.
Otherwise we get an inconsistent logic that lets us prove false
things:

proof 1 : P = NP
proof 1 = proof 1

proof 2 : P ̸= NP
proof 2 = proof 2

This is why Agda and Idris avoid adding fix.
Most common calculi correspond to constructive logic, not
classical ones, so principles like the law of excluded middle or
double negation elimination do not hold:

¬¬P → P

	Recursion in -Calculus
	Type Theory

