Introduction to Theoretical Computer Science

Lecture 14: λ-Calculus

Dr. Liam O'Connor
University of Edinburgh
Semester 1, 2023/2024

Introduction

While Turing was thinking about machines, Alonzo Church was computing with a programming language - a precursor of Haskell - called λ-calculus.
We often think of programming languages as methods to program a computer, but languages can also be thought of as the computer itself.

Comparing models

Church and Turing famously proved that Turing Machines and λ-calculus are equivalent in computational power. However, λ-calculus is different from other models in that it is higher-order: This means that computations (λ-terms) may take other computations as input. For TMs and RMs, we must work with encodings to achieve this.

Syntax

λ-calculus computations are expressed as λ-terms:

t| $::=$ | x | (variables) |
| :--- | :--- | ---: |
| | $t_{1} t_{2}$ | (application) |
| | $\lambda x . t$ | $(\lambda$-abstraction) |

λ-abstraction

A λ-term ($\lambda x . y)$ can be thought of as a function that, given an input bound to the variable x, returns the term y.
We will give a formal definition of this in terms of substitution later.

For now, we will extend λ-terms with arithmetic expressions:

$$
(\lambda x \cdot \lambda y \cdot(x+y) \div 2) 1020
$$

but this is not fundamental to the computational model. We will remove this feature later without reducing expressivity.

Higher-order functions

Function application is left associative:

$$
f a b c=((f a) b) c
$$

λ-abstraction extends as far as possible:

$$
\lambda a \cdot f a b=\lambda a \cdot(f a b)
$$

All functions are unary, like Haskell. Multiple argument functions are modelled with nested λ-abstractions:

$$
\lambda x \cdot \lambda y \cdot f y x
$$

λ-calculus is higher-order, in that functions may be arguments to functions themselves:

$$
\lambda f . \lambda g \cdot \lambda x . f(g x)
$$

α-equivalence

What is the difference between these two programs?

$$
(\lambda x \cdot \lambda x \cdot x+x) \quad(\lambda a \cdot \lambda y \cdot y+y)
$$

They are semantically identical, but differ in the choice of bound variable names. Such expressions are called α-equivalent.

We write $e_{1} \equiv_{\alpha} e_{2}$ if e_{1} is α-equivalent to e_{2}. The relation \equiv_{α} is an equivalence relation.
The process of consistently renaming variables that preserves α-equivalence is called α-renaming or α-conversion.

Substitution

A variable x is free in a term e if x occurs in e but is not bound (by a λ-abstraction) in e.

Example (Free Variables)

The variable x is free in $\lambda y . x+y$, but not in $\lambda x . \lambda y . x+y$.
A substitution, written $e[t / x]$, is the replacement of all free occurrences of x in e with the term t.

Example (Substitution on Arithmetic Expressions)

$(5 \times x+7)\left[{ }^{y \times 4} / x\right]$ is the same as $(5 \times(y \times 4)+7)$.

Problems with substitution

Consider these two α-equivalent expressions.

$$
(\lambda y \cdot y \times x+7) 5
$$

and

$$
(\lambda z . z \times x+7) 5
$$

What happens if you naïvely apply the substitution $[y \times 3 / x]$ to both expressions? You get two non- α-equivalent expressions!

$$
(\lambda y . y \times(y \times 3)+7) 5
$$

and

$$
(\lambda z . z \times(y \times 3)+7) 5
$$

This problem is called capture.

Variable Capture

Capture can occur for a substitution $e[t / x]$ whenever there is a bound variable in the term e with the same name as a free variable occuring in t.

Fortunately

It is always possible to avoid capture. Just α-rename the offending bound variable to an unused name.

β-reduction

The rule to evaluate function applications is called β-reduction:

$$
(\lambda x . t) u \quad \mapsto_{\beta} \quad t[\mu / x]
$$

β-reduction

β-reduction is a congruence:

$$
\begin{aligned}
& \overline{(\lambda x . t) u \mapsto_{\beta} t\left[{ }^{U} / x\right]} \\
& \frac{t \mapsto_{\beta} t^{\prime}}{s t \mapsto_{\beta} s t^{\prime}} \quad \frac{s \mapsto_{\beta} s^{\prime}}{s t \mapsto_{\beta} s^{\prime} t} \quad \frac{t \mapsto_{\beta} t^{\prime}}{\lambda x . t \mapsto_{\beta} \lambda x \cdot t^{\prime}}
\end{aligned}
$$

This means we can pick any reducible subexpression (called a redex) and perform β-reduction.

Example:

$$
\begin{array}{rll}
(\lambda x \cdot \lambda y . f(y x)) 5(\lambda x \cdot x) & \mapsto_{\beta} & (\lambda y \cdot f(y 5))(\lambda x \cdot x) \\
& \mapsto_{\beta} f((\lambda x \cdot x) 5) \\
& \mapsto_{\beta} f 5
\end{array}
$$

Confluence

There are often many different ways to reduce the same expression:

$$
(\lambda a . a)((\lambda y . f y) 5)
$$

Call-by-name

$(\lambda y . f y) 5 \quad(\lambda a . a)(f 5)$

Evaluate function args late (after application)

Evaluate function args early
(before application)

The Church-Rosser Theorem

If a term $t \beta$-reduces to two terms a and b, then there is a common term t^{\prime} to which both a and b are β-reducible.

Equivalence

Confluence means we can define another notion of equivalence, which equates more than α-equivalence. Two terms are $\alpha \beta$-equivalent, written $s \equiv{ }_{\alpha \beta} t$ if they β-reduce to α-equivalent terms.
η
There is also another equation that cannot be proven from β-equivalence alone, called η-reduction:

$$
(\lambda x . f x) \mapsto_{\eta} f
$$

Adding this reduction to the system preserves confluence (and therefore uniqueness of normal forms), so we have a notion of $\alpha \beta \eta$-equivalence also.

Normal Forms

A term that cannot be reduced further is called a normal form

Divergence

Does every term in λ-calculus have a normal form?

$$
(\lambda x \cdot x x)(\lambda x \cdot x x)
$$

Try to β-reduce this!

Uniqueness of NFs

Does any term in λ-calculus have more than one normal form? No: consider Church-Rosser.

Making λ-Calculus Usable

In order to demonstrate that λ-calculus is actually a usable programming language, we will demonstrate how to encode booleans and natural numbers as λ-terms, along with their operations.

General Idea

We transform a data type into the type of its eliminator. In other words, we make a function that can serve the same purpose as the data type at its use sites.

Booleans

How do we use booleans? To choose between two results!
So, a boolean will be a function that, given two arguments, returns the first one if it is true and the second one if it is false:

$$
\begin{aligned}
& \text { True } \equiv \lambda a \cdot \lambda b . a \\
& \text { False } \equiv \lambda a \cdot \lambda b . b
\end{aligned}
$$

How do we write an if statement?

$$
\text { If } \equiv \lambda c \cdot \lambda t . \lambda e . c t e
$$

Example (Test it out!)

Try β-normalising If True False True.

Natural Numbers

How do we use natural numbers? To do something n times!
So, a natural number will be a function that takes a function f and a value x, and applies the function f to x that number of times:

$$
\begin{aligned}
\text { Zero } & \equiv \lambda f \cdot \lambda x \cdot x \\
\text { One } & \equiv \lambda f \cdot \lambda x \cdot f x \\
\text { Two } & \equiv \lambda f \cdot \lambda x \cdot f(f x)
\end{aligned}
$$

How do we write Suc?

$$
\text { Suc } \equiv \lambda n \cdot \lambda f . \lambda x . f(n f x)
$$

How do we write Add?

$$
\text { Add } \equiv \lambda m \cdot \lambda n \cdot \lambda f \cdot \lambda x \cdot m f(n f x)
$$

Natural Numbers

Example

Try β-normalising Suc One.
Example
Try writing a different λ-term for defining Suc.

Example

Try writing a λ-term for defining Multiply.

A Final Puzzle

Puzzle

Find a λ-term \mathcal{Y} such that

$$
\mathcal{Y} f \quad \mapsto_{\beta}^{\star} \quad f(\mathcal{Y} f)
$$

Can you use this to define recursive functions? e.g. factorial?

