
Introduction to Theoretical Computer
Science

Lecture 13: The Polynomial Hierarchy, Alternation and
PSPACE

Dr. Liam O’Connor
University of Edinburgh
Semester 1, 2023/2024

P vs NP vs CoNP Polynomial Hierarchy Alternation and PSPACE

The Class CoNP

trick Question
Is the class NP closed under complement?

We don’t know.

Question
Why can’t we just flip the answer, like we do for P?

Nondeterministic machines accept if just one path accepts. To
flip the answer of an NRM, we’d have to accept an answer if all
paths reject. This is no longer an (angelic) NRM.

Question
What is NP ∩ CoNP? is it P? (we don’t know)

P vs NP vs CoNP Polynomial Hierarchy Alternation and PSPACE

What we have now

NP CoNP

P

?

P vs NP vs CoNP Polynomial Hierarchy Alternation and PSPACE

Sigmas
We shall introduce notation to describe polynomial problems.

Sigma
The set ΣP

1 describes all problems that can be phrased as
{y | ∃Px ∈ N. R(x , y)}, where R is a P-decidable predicate and
∃Px . . . indicates that x is of size polynomial in the size of y .

If a problem Q ∈ ΣP
1 then Q is in NP. Why?

(we can “guess” an x and polynomially test R(x , y))
If a problem Q is in NP then P ∈ ΣP

1 . Why?

Certificates
We can say that x is a certificate showing which “guesses” can
made by our NRM giving an accepting run.

So, NP = ΣP
1 .

P vs NP vs CoNP Polynomial Hierarchy Alternation and PSPACE

Pis

Pi
The set ΠP

1 describes all problems that can be phrased as
{y | ∀Px ∈ N. R(x , y)}, where R is a P-decidable predicate and
∀Px . . . indicates that x is of size polynomial in the size of y .

ΣP
1 = {x | ∃Py . R(x , y)}

= {x | ¬∃Py . R(x , y)}
= {x | ∀Py . ¬R(x , y)}
= ΠP

1

As ΣP
1 is NP, ΠP

1 is CoNP.

P vs NP vs CoNP Polynomial Hierarchy Alternation and PSPACE

Deltas

For reasons that are unknown to me, some books have:

Delta
The set ∆P

1 describes the intersection of ΣP
1 and ΠP

1 .

While others have

Delta
The set ∆P

1 describes the set P

From our characterisations of ΣP
1 and ΠP

1 , we have that ∆P
1 ⊇ P,

but we don’t know if these definitions are equal.

P vs NP vs CoNP Polynomial Hierarchy Alternation and PSPACE

Relabeling

ΣP
1 ΠP

1

∆P
1

P vs NP vs CoNP Polynomial Hierarchy Alternation and PSPACE

Moving Higher

Definitions

ΣP
2 is all problems of form {x | ∃Py .∀Pz . R(x , y , z)}.

ΠP
2 is all problems of form {x | ∀Py .∃Pz . R(x , y , z)}.

∆P
2 = ΣP

2 ∩ ΠP
2

Note that ΣP
1 ,ΠP

1 ,∆P
1 are all ⊆ ∆P

2 (and therefore ⊆ ΣP
2 and

⊆ ΠP
2). Why?

(our R can simply “ignore” one of the parameters)

P vs NP vs CoNP Polynomial Hierarchy Alternation and PSPACE

The Polynomial Hierarchy

∆P
1

ΣP
1 ΠP

1

∆P
2

ΣP
2 ΠP

2

An equivalent characterisation
We can define in terms of oracles:

∆P
2 is all problems that are

decidable in polynomial time by
some deterministic TM/RM with
an O(1) oracle for some
complete problem in ΣP

1 , i.e. it
is P with an O(1) oracle for NP.
ΣP

2 allows the TM/RM to be
nondeterministic, i.e. it is NP
with an O(1) oracle for NP.
ΠP

2 is CoNP with an oracle for
NP.

P vs NP vs CoNP Polynomial Hierarchy Alternation and PSPACE

Building up

In general, for any n > 1:
∆P

n is all problems that are decidable by some
deterministic, polynomially bounded TM/RM with an O(1)
oracle for some problem ∈ ΣP

n−1.

ΣP
n are all problems that are decidable by some

nondeterministic, polynomially bounded TM/RM with an
O(1) oracle for some problem ∈ ΣP

n−1.

ΠP
n are all problems decidable by some

co-nondeterministic, polynomially bounded TM/RM with
an O(1) oracle for some problem ∈ ΣP

n−1.

Co-nondeterminism
Could also be called demonic nondeterminism. Like our normal
(angelic) nondeterminism but only accepts if all paths accept.

P vs NP vs CoNP Polynomial Hierarchy Alternation and PSPACE

Alternation

Alternation
Equivalently ΣP

n are all problems that can be phrased as some
alternation of (P-bounded) quantifiers, starting with ∃P:

{w | ∃Px1.∀Px2.∃Px3.∀Px4. . . . xn. R(w , x1, . . . , xn)}

ΠP
n starts instead with ∀P:

{w | ∀Px1.∃Px2.∀Px3.∃Px4. . . . xn. R(w , x1, . . . , xn)}

P vs NP vs CoNP Polynomial Hierarchy Alternation and PSPACE

Alternating Machines

Alternating Machines combine the acceptance modes of both
angelic and demonic nondeterministic machines.

Alternating Register Machines
Consider NRMs where instead of just a MAYBE instruction we
have a MAYBE∀ instruction and a MAYBE∃ instruction.

MAYBE∃ is a nondeterministic choice where we accept if
one branch accepts.
MAYBE∀ is a nondeterministic choice where we accept
only when both branches accept.

Alternating Turing Machines are defined by labelling states
with either ∀ or ∃.

P vs NP vs CoNP Polynomial Hierarchy Alternation and PSPACE

Alternating Machines and the Polynomial Hierarchy

The class ΣP
n could equivalently be defined as the class of

problems decided in polynomial time by an alternating
machine that initially uses ∃-nondeterminism, and every
path in the machine swaps quantifiers (i.e. to ∀ or back to
∃) at most n − 1 times.
ΠP

n is the same, except that we start with ∀ instead.

The class AP
AP is the class of all problems decidable by an alternating
machine in polynomial time, without any restriction on
swapping quantifiers.
AP is known to be equal to PSPACE (more on this in a moment)

P vs NP vs CoNP Polynomial Hierarchy Alternation and PSPACE

A Fragile House of Cards

Warning
The polynomial hierarchy could collapse at any point.
(i.e. all of the classes in the PH could be equal)

We don’t know that P ̸= PSPACE, and the entire polynomial
hierarchy is contained inside AP which = PSPACE.

Wait, what’s PSPACE?
An RM/TM is f (n)-space-bounded if it may use only f (inputsize)
space. For TMs, space means cells on tape; for RMs, number of
bits in registers.
PSPACE is the class of problems solvable by
polynomially-space-bounded machines.

The following are obvious (Exercise: why?):
PSPACE ⊇ P ? PSPACE ⊇ NP ? PSPACE ⊆ EXPTIME?

P vs NP vs CoNP Polynomial Hierarchy Alternation and PSPACE

Conclusions

This concludes our study of complexity theory. Next week, we
start on a new (or rather, very old) model of computation that
is the foundation for modern studies of programming
languages and their semantics, the λ-calculus.

	P vs NP vs CoNP
	Polynomial Hierarchy
	Alternation and PSPACE

