
Introduction to Theoretical Computer
Science

Lecture 12: NP-Completeness

Dr. Liam O’Connor
University of Edinburgh
Semester 1, 2023/2024

Hardness and Completeness Cook-Levin Theorem Other NP-Complete Problems

Hardness

Definition
A problem P1 is polynomially reducible to P2, written P1 ≤P P2,
if there is a polynomially-bounded reduction from P1 to P2.

Recall:
To prove that a problem P2 is hard, show that there is an easy
reduction from a known hard problem P1 to P2.

Definition
A problem P is NP-Hard if, for every A ∈ NP, A ≤P P

If a problem P1 is NP-hard and P1 ≤P P2 then P2 is
NP-Hard.
To prove that a problem P2 is NP-hard, show that there’s a
polynomial reduction from a known NP-hard P1 to P2.

Hardness and Completeness Cook-Levin Theorem Other NP-Complete Problems

Hardness

Definition
A problem P1 is polynomially reducible to P2, written P1 ≤P P2,
if there is a polynomially-bounded reduction from P1 to P2.

Recall:
To prove that a problem P2 is hard, show that there is an easy
reduction from a known hard problem P1 to P2.

Definition
A problem P is NP-Hard if, for every A ∈ NP, A ≤P P

If a problem P1 is NP-hard and P1 ≤P P2 then P2 is
NP-Hard.
To prove that a problem P2 is NP-hard, show that there’s a
polynomial reduction from a known NP-hard P1 to P2.

Hardness and Completeness Cook-Levin Theorem Other NP-Complete Problems

Hardness

Definition
A problem P1 is polynomially reducible to P2, written P1 ≤P P2,
if there is a polynomially-bounded reduction from P1 to P2.

Recall:
To prove that a problem P2 is hard, show that there is an easy
reduction from a known hard problem P1 to P2.

Definition
A problem P is NP-Hard if, for every A ∈ NP, A ≤P P

If a problem P1 is NP-hard and P1 ≤P P2 then P2 is
NP-Hard.
To prove that a problem P2 is NP-hard, show that there’s a
polynomial reduction from a known NP-hard P1 to P2.

Hardness and Completeness Cook-Levin Theorem Other NP-Complete Problems

Completeness

Question
If any NP-hard problem is shown to be in P, what does that
mean?

Definition
A problem is NP-complete if it is both NP-hard and in NP.

Do NP-Complete Problems Exist?
There are many such problems, including HPP and
Timetabling. In fact, almost all NP-problems encountered in
practice are either in P, or NP-complete.
Computers and Intractability - A guide to theory of NP-completeness, M.R. Garey and
D.S. Johnson, Freeman 1979 lists a whole bunch.

Hardness and Completeness Cook-Levin Theorem Other NP-Complete Problems

Completeness

Question
If any NP-hard problem is shown to be in P, what does that
mean?

Definition
A problem is NP-complete if it is both NP-hard and in NP.

Do NP-Complete Problems Exist?
There are many such problems, including HPP and
Timetabling. In fact, almost all NP-problems encountered in
practice are either in P, or NP-complete.
Computers and Intractability - A guide to theory of NP-completeness, M.R. Garey and
D.S. Johnson, Freeman 1979 lists a whole bunch.

Hardness and Completeness Cook-Levin Theorem Other NP-Complete Problems

Completeness

Question
If any NP-hard problem is shown to be in P, what does that
mean?

Definition
A problem is NP-complete if it is both NP-hard and in NP.

Do NP-Complete Problems Exist?
There are many such problems, including HPP and
Timetabling. In fact, almost all NP-problems encountered in
practice are either in P, or NP-complete.
Computers and Intractability - A guide to theory of NP-completeness, M.R. Garey and
D.S. Johnson, Freeman 1979 lists a whole bunch.

Hardness and Completeness Cook-Levin Theorem Other NP-Complete Problems

The original NP-Complete problem

The Cook-Levin theorem states that a particular NP problem,
SAT , is NP-complete. The theorem is usually proved for TMs;
we shall do it later for RMs.

Why Cook-Levin?
The notion of NP-completeness, and the theorem, were due to
Stephen Cook (and partly Richard Karp)—in the West. But as
with many major mathematical results of the mid-20th
century, they were discovered independently in the Soviet
Union, by Leonid Levin. Since the fall of the Iron Curtain made
Soviet maths more accessible, we try to attribute results to
both discoverers.

Hardness and Completeness Cook-Levin Theorem Other NP-Complete Problems

The original NP-Complete problem

The Cook-Levin theorem states that a particular NP problem,
SAT , is NP-complete. The theorem is usually proved for TMs;
we shall do it later for RMs.

Why Cook-Levin?
The notion of NP-completeness, and the theorem, were due to
Stephen Cook (and partly Richard Karp)—in the West. But as
with many major mathematical results of the mid-20th
century, they were discovered independently in the Soviet
Union, by Leonid Levin. Since the fall of the Iron Curtain made
Soviet maths more accessible, we try to attribute results to
both discoverers.

Hardness and Completeness Cook-Levin Theorem Other NP-Complete Problems

SAT
SAT is a very significant problem about boolean formulae.

The SAT Problem
Given a boolean formula ϕ over a set of boolean variables Xi , is
there an assignment of values to Xi which satisfies ϕ?
(i.e. makes ϕ true?)
Equivalently, is ϕ non-contradictory?

(A∨B)∧ (¬B ∨C)∧ (A∨C) is satisfiable, e.g. by making A
and C true. (A ∧ B) ∧ (¬B ∧ C) ∧ (A ∧ C) is not satisfiable.
The size of a SAT problem is the number of symbols in ϕ.
SAT is obviously in NP: just nondeterministically “guess”
an assignment and check it.
It’s also apparently exponential in reality: no obvious way
to avoid checking all possible assignments (the truth table
method).

Hardness and Completeness Cook-Levin Theorem Other NP-Complete Problems

SAT
SAT is a very significant problem about boolean formulae.

The SAT Problem
Given a boolean formula ϕ over a set of boolean variables Xi , is
there an assignment of values to Xi which satisfies ϕ?
(i.e. makes ϕ true?)

Equivalently, is ϕ non-contradictory?

(A∨B)∧ (¬B ∨C)∧ (A∨C) is satisfiable, e.g. by making A
and C true. (A ∧ B) ∧ (¬B ∧ C) ∧ (A ∧ C) is not satisfiable.
The size of a SAT problem is the number of symbols in ϕ.
SAT is obviously in NP: just nondeterministically “guess”
an assignment and check it.
It’s also apparently exponential in reality: no obvious way
to avoid checking all possible assignments (the truth table
method).

Hardness and Completeness Cook-Levin Theorem Other NP-Complete Problems

SAT
SAT is a very significant problem about boolean formulae.

The SAT Problem
Given a boolean formula ϕ over a set of boolean variables Xi , is
there an assignment of values to Xi which satisfies ϕ?
(i.e. makes ϕ true?)
Equivalently, is ϕ non-contradictory?

(A∨B)∧ (¬B ∨C)∧ (A∨C) is satisfiable, e.g. by making A
and C true. (A ∧ B) ∧ (¬B ∧ C) ∧ (A ∧ C) is not satisfiable.
The size of a SAT problem is the number of symbols in ϕ.
SAT is obviously in NP: just nondeterministically “guess”
an assignment and check it.
It’s also apparently exponential in reality: no obvious way
to avoid checking all possible assignments (the truth table
method).

Hardness and Completeness Cook-Levin Theorem Other NP-Complete Problems

SAT
SAT is a very significant problem about boolean formulae.

The SAT Problem
Given a boolean formula ϕ over a set of boolean variables Xi , is
there an assignment of values to Xi which satisfies ϕ?
(i.e. makes ϕ true?)
Equivalently, is ϕ non-contradictory?

(A∨B)∧ (¬B ∨C)∧ (A∨C) is satisfiable, e.g. by making A
and C true.

(A ∧ B) ∧ (¬B ∧ C) ∧ (A ∧ C) is not satisfiable.
The size of a SAT problem is the number of symbols in ϕ.
SAT is obviously in NP: just nondeterministically “guess”
an assignment and check it.
It’s also apparently exponential in reality: no obvious way
to avoid checking all possible assignments (the truth table
method).

Hardness and Completeness Cook-Levin Theorem Other NP-Complete Problems

SAT
SAT is a very significant problem about boolean formulae.

The SAT Problem
Given a boolean formula ϕ over a set of boolean variables Xi , is
there an assignment of values to Xi which satisfies ϕ?
(i.e. makes ϕ true?)
Equivalently, is ϕ non-contradictory?

(A∨B)∧ (¬B ∨C)∧ (A∨C) is satisfiable, e.g. by making A
and C true. (A ∧ B) ∧ (¬B ∧ C) ∧ (A ∧ C) is not satisfiable.

The size of a SAT problem is the number of symbols in ϕ.
SAT is obviously in NP: just nondeterministically “guess”
an assignment and check it.
It’s also apparently exponential in reality: no obvious way
to avoid checking all possible assignments (the truth table
method).

Hardness and Completeness Cook-Levin Theorem Other NP-Complete Problems

SAT
SAT is a very significant problem about boolean formulae.

The SAT Problem
Given a boolean formula ϕ over a set of boolean variables Xi , is
there an assignment of values to Xi which satisfies ϕ?
(i.e. makes ϕ true?)
Equivalently, is ϕ non-contradictory?

(A∨B)∧ (¬B ∨C)∧ (A∨C) is satisfiable, e.g. by making A
and C true. (A ∧ B) ∧ (¬B ∧ C) ∧ (A ∧ C) is not satisfiable.
The size of a SAT problem is the number of symbols in ϕ.

SAT is obviously in NP: just nondeterministically “guess”
an assignment and check it.
It’s also apparently exponential in reality: no obvious way
to avoid checking all possible assignments (the truth table
method).

Hardness and Completeness Cook-Levin Theorem Other NP-Complete Problems

SAT
SAT is a very significant problem about boolean formulae.

The SAT Problem
Given a boolean formula ϕ over a set of boolean variables Xi , is
there an assignment of values to Xi which satisfies ϕ?
(i.e. makes ϕ true?)
Equivalently, is ϕ non-contradictory?

(A∨B)∧ (¬B ∨C)∧ (A∨C) is satisfiable, e.g. by making A
and C true. (A ∧ B) ∧ (¬B ∧ C) ∧ (A ∧ C) is not satisfiable.
The size of a SAT problem is the number of symbols in ϕ.
SAT is obviously in NP: just nondeterministically “guess”
an assignment and check it.

It’s also apparently exponential in reality: no obvious way
to avoid checking all possible assignments (the truth table
method).

Hardness and Completeness Cook-Levin Theorem Other NP-Complete Problems

SAT
SAT is a very significant problem about boolean formulae.

The SAT Problem
Given a boolean formula ϕ over a set of boolean variables Xi , is
there an assignment of values to Xi which satisfies ϕ?
(i.e. makes ϕ true?)
Equivalently, is ϕ non-contradictory?

(A∨B)∧ (¬B ∨C)∧ (A∨C) is satisfiable, e.g. by making A
and C true. (A ∧ B) ∧ (¬B ∧ C) ∧ (A ∧ C) is not satisfiable.
The size of a SAT problem is the number of symbols in ϕ.
SAT is obviously in NP: just nondeterministically “guess”
an assignment and check it.
It’s also apparently exponential in reality: no obvious way
to avoid checking all possible assignments (the truth table
method).

Hardness and Completeness Cook-Levin Theorem Other NP-Complete Problems

The original NP-Complete problem

The Cook-Levin theorem states that a particular NP problem,
SAT , is NP-complete. The theorem is usually proved for TMs;
we shall do it later for RMs.

Why Cook-Levin?
The notion of NP-completeness, and the theorem, were due to
Stephen Cook (and partly Richard Karp)—in the West. But as
with many major mathematical results of the mid-20th
century, they were discovered independently in the Soviet
Union, by Leonid Levin. Since the fall of the Iron Curtain made
Soviet maths more accessible, we try to attribute results to
both discoverers.

Hardness and Completeness Cook-Levin Theorem Other NP-Complete Problems

The original NP-Complete problem

The Cook-Levin theorem states that a particular NP problem,
SAT , is NP-complete. The theorem is usually proved for TMs;
we shall do it later for RMs.

Why Cook-Levin?
The notion of NP-completeness, and the theorem, were due to
Stephen Cook (and partly Richard Karp)—in the West. But as
with many major mathematical results of the mid-20th
century, they were discovered independently in the Soviet
Union, by Leonid Levin. Since the fall of the Iron Curtain made
Soviet maths more accessible, we try to attribute results to
both discoverers.

Hardness and Completeness Cook-Levin Theorem Other NP-Complete Problems

SAT
SAT is a very significant problem about boolean formulae.

The SAT Problem
Given a boolean formula ϕ over a set of boolean variables Xi , is
there an assignment of values to Xi which satisfies ϕ?
(i.e. makes ϕ true?)
Equivalently, is ϕ non-contradictory?

(A∨B)∧ (¬B ∨C)∧ (A∨C) is satisfiable, e.g. by making A
and C true. (A ∧ B) ∧ (¬B ∧ C) ∧ (A ∧ C) is not satisfiable.
The size of a SAT problem is the number of symbols in ϕ.
SAT is obviously in NP: just nondeterministically “guess”
an assignment and check it.
It’s also apparently exponential in reality: no obvious way
to avoid checking all possible assignments (the truth table
method).

Hardness and Completeness Cook-Levin Theorem Other NP-Complete Problems

SAT
SAT is a very significant problem about boolean formulae.

The SAT Problem
Given a boolean formula ϕ over a set of boolean variables Xi , is
there an assignment of values to Xi which satisfies ϕ?
(i.e. makes ϕ true?)

Equivalently, is ϕ non-contradictory?

(A∨B)∧ (¬B ∨C)∧ (A∨C) is satisfiable, e.g. by making A
and C true. (A ∧ B) ∧ (¬B ∧ C) ∧ (A ∧ C) is not satisfiable.
The size of a SAT problem is the number of symbols in ϕ.
SAT is obviously in NP: just nondeterministically “guess”
an assignment and check it.
It’s also apparently exponential in reality: no obvious way
to avoid checking all possible assignments (the truth table
method).

Hardness and Completeness Cook-Levin Theorem Other NP-Complete Problems

SAT
SAT is a very significant problem about boolean formulae.

The SAT Problem
Given a boolean formula ϕ over a set of boolean variables Xi , is
there an assignment of values to Xi which satisfies ϕ?
(i.e. makes ϕ true?)
Equivalently, is ϕ non-contradictory?

(A∨B)∧ (¬B ∨C)∧ (A∨C) is satisfiable, e.g. by making A
and C true. (A ∧ B) ∧ (¬B ∧ C) ∧ (A ∧ C) is not satisfiable.
The size of a SAT problem is the number of symbols in ϕ.
SAT is obviously in NP: just nondeterministically “guess”
an assignment and check it.
It’s also apparently exponential in reality: no obvious way
to avoid checking all possible assignments (the truth table
method).

Hardness and Completeness Cook-Levin Theorem Other NP-Complete Problems

SAT
SAT is a very significant problem about boolean formulae.

The SAT Problem
Given a boolean formula ϕ over a set of boolean variables Xi , is
there an assignment of values to Xi which satisfies ϕ?
(i.e. makes ϕ true?)
Equivalently, is ϕ non-contradictory?

(A∨B)∧ (¬B ∨C)∧ (A∨C) is satisfiable, e.g. by making A
and C true.

(A ∧ B) ∧ (¬B ∧ C) ∧ (A ∧ C) is not satisfiable.
The size of a SAT problem is the number of symbols in ϕ.
SAT is obviously in NP: just nondeterministically “guess”
an assignment and check it.
It’s also apparently exponential in reality: no obvious way
to avoid checking all possible assignments (the truth table
method).

Hardness and Completeness Cook-Levin Theorem Other NP-Complete Problems

SAT
SAT is a very significant problem about boolean formulae.

The SAT Problem
Given a boolean formula ϕ over a set of boolean variables Xi , is
there an assignment of values to Xi which satisfies ϕ?
(i.e. makes ϕ true?)
Equivalently, is ϕ non-contradictory?

(A∨B)∧ (¬B ∨C)∧ (A∨C) is satisfiable, e.g. by making A
and C true. (A ∧ B) ∧ (¬B ∧ C) ∧ (A ∧ C) is not satisfiable.

The size of a SAT problem is the number of symbols in ϕ.
SAT is obviously in NP: just nondeterministically “guess”
an assignment and check it.
It’s also apparently exponential in reality: no obvious way
to avoid checking all possible assignments (the truth table
method).

Hardness and Completeness Cook-Levin Theorem Other NP-Complete Problems

SAT
SAT is a very significant problem about boolean formulae.

The SAT Problem
Given a boolean formula ϕ over a set of boolean variables Xi , is
there an assignment of values to Xi which satisfies ϕ?
(i.e. makes ϕ true?)
Equivalently, is ϕ non-contradictory?

(A∨B)∧ (¬B ∨C)∧ (A∨C) is satisfiable, e.g. by making A
and C true. (A ∧ B) ∧ (¬B ∧ C) ∧ (A ∧ C) is not satisfiable.
The size of a SAT problem is the number of symbols in ϕ.

SAT is obviously in NP: just nondeterministically “guess”
an assignment and check it.
It’s also apparently exponential in reality: no obvious way
to avoid checking all possible assignments (the truth table
method).

Hardness and Completeness Cook-Levin Theorem Other NP-Complete Problems

SAT
SAT is a very significant problem about boolean formulae.

The SAT Problem
Given a boolean formula ϕ over a set of boolean variables Xi , is
there an assignment of values to Xi which satisfies ϕ?
(i.e. makes ϕ true?)
Equivalently, is ϕ non-contradictory?

(A∨B)∧ (¬B ∨C)∧ (A∨C) is satisfiable, e.g. by making A
and C true. (A ∧ B) ∧ (¬B ∧ C) ∧ (A ∧ C) is not satisfiable.
The size of a SAT problem is the number of symbols in ϕ.
SAT is obviously in NP: just nondeterministically “guess”
an assignment and check it.

It’s also apparently exponential in reality: no obvious way
to avoid checking all possible assignments (the truth table
method).

Hardness and Completeness Cook-Levin Theorem Other NP-Complete Problems

SAT
SAT is a very significant problem about boolean formulae.

The SAT Problem
Given a boolean formula ϕ over a set of boolean variables Xi , is
there an assignment of values to Xi which satisfies ϕ?
(i.e. makes ϕ true?)
Equivalently, is ϕ non-contradictory?

(A∨B)∧ (¬B ∨C)∧ (A∨C) is satisfiable, e.g. by making A
and C true. (A ∧ B) ∧ (¬B ∧ C) ∧ (A ∧ C) is not satisfiable.
The size of a SAT problem is the number of symbols in ϕ.
SAT is obviously in NP: just nondeterministically “guess”
an assignment and check it.
It’s also apparently exponential in reality: no obvious way
to avoid checking all possible assignments (the truth table
method).

Hardness and Completeness Cook-Levin Theorem Other NP-Complete Problems

The Proof

The SAT problem is in NP: Nondeterministically guess an
assignment and check it in polynomial time.
The SAT problem is NP-Hard: Shown by reduction from
any NP problem to SAT .

The Reduction
Suppose (D,Q) ∈ NP. We shall construct a reduction
Q ≤P SAT . Given an instance d ∈ D, we shall construct a
formula ϕd which can be satisfied if its variables describe the
successful executions of an NRM checking Q. This machine can
be polynomially bounded, so the size of ϕd will be polynomial
in the size of d .

Hardness and Completeness Cook-Levin Theorem Other NP-Complete Problems

The Variables

Our NRM for Q, M = (R0, . . . ,Rm−1, I0, . . . , In−1) runs for s steps
(i.e. p(|d |) where d is our input and p is our polynomial bound).

Name Meaning How Many
Ctj Program counter at step t is on Ij . s · n
Rtik kth bit of Ri at step t. s · m · 2s

Why 2s?
How big can the registers get? Running s steps of ADD(0, 0)
will make R0 double s times, if it starts at 2|d | then we need
2|d |+s capacity. Then w.l.o.g. 22s i.e. 2s bits is enough.

Hardness and Completeness Cook-Levin Theorem Other NP-Complete Problems

The Variables

Our NRM for Q, M = (R0, . . . ,Rm−1, I0, . . . , In−1) runs for s steps
(i.e. p(|d |) where d is our input and p is our polynomial bound).

Name Meaning How Many
Ctj Program counter at step t is on Ij .

s · n
Rtik kth bit of Ri at step t. s · m · 2s

Why 2s?
How big can the registers get? Running s steps of ADD(0, 0)
will make R0 double s times, if it starts at 2|d | then we need
2|d |+s capacity. Then w.l.o.g. 22s i.e. 2s bits is enough.

Hardness and Completeness Cook-Levin Theorem Other NP-Complete Problems

The Variables

Our NRM for Q, M = (R0, . . . ,Rm−1, I0, . . . , In−1) runs for s steps
(i.e. p(|d |) where d is our input and p is our polynomial bound).

Name Meaning How Many
Ctj Program counter at step t is on Ij . s · n

Rtik kth bit of Ri at step t. s · m · 2s

Why 2s?
How big can the registers get? Running s steps of ADD(0, 0)
will make R0 double s times, if it starts at 2|d | then we need
2|d |+s capacity. Then w.l.o.g. 22s i.e. 2s bits is enough.

Hardness and Completeness Cook-Levin Theorem Other NP-Complete Problems

The Variables

Our NRM for Q, M = (R0, . . . ,Rm−1, I0, . . . , In−1) runs for s steps
(i.e. p(|d |) where d is our input and p is our polynomial bound).

Name Meaning How Many
Ctj Program counter at step t is on Ij . s · n
Rtik kth bit of Ri at step t.

s · m · 2s

Why 2s?
How big can the registers get? Running s steps of ADD(0, 0)
will make R0 double s times, if it starts at 2|d | then we need
2|d |+s capacity. Then w.l.o.g. 22s i.e. 2s bits is enough.

Hardness and Completeness Cook-Levin Theorem Other NP-Complete Problems

The Variables

Our NRM for Q, M = (R0, . . . ,Rm−1, I0, . . . , In−1) runs for s steps
(i.e. p(|d |) where d is our input and p is our polynomial bound).

Name Meaning How Many
Ctj Program counter at step t is on Ij . s · n
Rtik kth bit of Ri at step t. s · m · 2s

Why 2s?
How big can the registers get? Running s steps of ADD(0, 0)
will make R0 double s times, if it starts at 2|d | then we need
2|d |+s capacity. Then w.l.o.g. 22s i.e. 2s bits is enough.

Hardness and Completeness Cook-Levin Theorem Other NP-Complete Problems

The Formula

C00 ∧ ρinit ∧ χone ∧
∧
t

χt ∧ α

Name Meaning How Many
χone Program counter is in one place. s · n2

χt Step t + 1 follows from step t. s2 · m
ρinit Initial register values m · n
α machine accepts s

Hardness and Completeness Cook-Levin Theorem Other NP-Complete Problems

The Formula

C00 ∧ ρinit ∧ χone ∧
∧
t

χt ∧ α

Name Meaning How Many
χone Program counter is in one place. s · n2

χt Step t + 1 follows from step t. s2 · m

ρinit Initial register values m · n
α machine accepts s

Hardness and Completeness Cook-Levin Theorem Other NP-Complete Problems

The Formula

C00 ∧ ρinit ∧ χone ∧
∧
t

χt ∧ α

Name Meaning How Many
χone Program counter is in one place. s · n2

χt Step t + 1 follows from step t. s2 · m
ρinit Initial register values m · n

α machine accepts s

Hardness and Completeness Cook-Levin Theorem Other NP-Complete Problems

The Formula

C00 ∧ ρinit ∧ χone ∧
∧
t

χt ∧ α

Name Meaning How Many
χone Program counter is in one place. s · n2

χt Step t + 1 follows from step t. s2 · m
ρinit Initial register values m · n
α machine accepts s

Hardness and Completeness Cook-Levin Theorem Other NP-Complete Problems

Details
Some formulae are easy:

Program counter is in one place
χone ≡

∧
t
∨

j

(
Ctj ∧

∧
j ′ ̸=j ¬Ctj ′

)

Some are more tedious:
Step t + 1 follows from step t

χt ≡ ϕt ∧ ρt where ϕt models control flow changes and ρt
models register changes.
ϕt ≡

∨
j (Ctj ∧ νtj), where νtj is:

Ct+1,j+1 if Ij is INC, ADD, or SUB.
Ct+1,j+1 ∨ Ct+1,j ′ if Ij is MAYBE(j ′)(
(
∨

k Rtik) ∧ Ct+1,j+1
)
∧
(
(
∧

k ¬Rtik) ∧ Ct+1,j ′
)

if Ij is DECJZ(i , j ′)

Hardness and Completeness Cook-Levin Theorem Other NP-Complete Problems

Details
Some formulae are easy:

Program counter is in one place
χone ≡

∧
t
∨

j

(
Ctj ∧

∧
j ′ ̸=j ¬Ctj ′

)
Some are more tedious:
Step t + 1 follows from step t

χt ≡ ϕt ∧ ρt where ϕt models control flow changes and ρt
models register changes.

ϕt ≡
∨

j (Ctj ∧ νtj), where νtj is:
Ct+1,j+1 if Ij is INC, ADD, or SUB.
Ct+1,j+1 ∨ Ct+1,j ′ if Ij is MAYBE(j ′)(
(
∨

k Rtik) ∧ Ct+1,j+1
)
∧
(
(
∧

k ¬Rtik) ∧ Ct+1,j ′
)

if Ij is DECJZ(i , j ′)

Hardness and Completeness Cook-Levin Theorem Other NP-Complete Problems

Details
Some formulae are easy:

Program counter is in one place
χone ≡

∧
t
∨

j

(
Ctj ∧

∧
j ′ ̸=j ¬Ctj ′

)
Some are more tedious:
Step t + 1 follows from step t

χt ≡ ϕt ∧ ρt where ϕt models control flow changes and ρt
models register changes.
ϕt ≡

∨
j (Ctj ∧ νtj), where νtj is:

Ct+1,j+1 if Ij is INC, ADD, or SUB.
Ct+1,j+1 ∨ Ct+1,j ′ if Ij is MAYBE(j ′)(
(
∨

k Rtik) ∧ Ct+1,j+1
)
∧
(
(
∧

k ¬Rtik) ∧ Ct+1,j ′
)

if Ij is DECJZ(i , j ′)

Hardness and Completeness Cook-Levin Theorem Other NP-Complete Problems

Register changes

The formulae concerning registers are very tedious, but can
easily be found. See your hardware course!
(Also Julian’s old notes for this course, which someone should remind me to upload)

Exercise
Write a formula ρ

+
tii ′ which states that at step t + 1, Ri will have

the sum of the values in Ri and Ri ′ at step t.

Despite this being very tedious, these formulae are polynomial
(O(s4)) !

Hardness and Completeness Cook-Levin Theorem Other NP-Complete Problems

Register changes

The formulae concerning registers are very tedious, but can
easily be found. See your hardware course!
(Also Julian’s old notes for this course, which someone should remind me to upload)

Exercise
Write a formula ρ

+
tii ′ which states that at step t + 1, Ri will have

the sum of the values in Ri and Ri ′ at step t.

Despite this being very tedious, these formulae are polynomial
(O(s4)) !

Hardness and Completeness Cook-Levin Theorem Other NP-Complete Problems

Register changes

The formulae concerning registers are very tedious, but can
easily be found. See your hardware course!
(Also Julian’s old notes for this course, which someone should remind me to upload)

Exercise
Write a formula ρ

+
tii ′ which states that at step t + 1, Ri will have

the sum of the values in Ri and Ri ′ at step t.

Despite this being very tedious, these formulae are polynomial
(O(s4)) !

Hardness and Completeness Cook-Levin Theorem Other NP-Complete Problems

3SAT

ϕ is in conjunctive normal form if it is of the form
∧

i
∨

j Pij
where each Pij is a literal (either a variable P or negation
of one ¬P .).
ϕ is in k-CNF if each clause

∨
j Pij has at most k literals.

The Problem
3SAT is the problem of whether a satisfying assignment exists
for a formula in 3-CNF.

Reduction from SAT to 3SAT is difficult because normally
converting to 3-CNF is an exponential blowup. The Tseitin
encoding is used instead to give a not-equivalent but
equisatisfiable formula (See Julian’s note, attached).
Note: Cook-Levin for TMs is already for 3SAT.

Hardness and Completeness Cook-Levin Theorem Other NP-Complete Problems

3SAT

ϕ is in conjunctive normal form if it is of the form
∧

i
∨

j Pij
where each Pij is a literal (either a variable P or negation
of one ¬P .).
ϕ is in k-CNF if each clause

∨
j Pij has at most k literals.

The Problem
3SAT is the problem of whether a satisfying assignment exists
for a formula in 3-CNF.

Reduction from SAT to 3SAT is difficult because normally
converting to 3-CNF is an exponential blowup. The Tseitin
encoding is used instead to give a not-equivalent but
equisatisfiable formula (See Julian’s note, attached).

Note: Cook-Levin for TMs is already for 3SAT.

Hardness and Completeness Cook-Levin Theorem Other NP-Complete Problems

3SAT

ϕ is in conjunctive normal form if it is of the form
∧

i
∨

j Pij
where each Pij is a literal (either a variable P or negation
of one ¬P .).
ϕ is in k-CNF if each clause

∨
j Pij has at most k literals.

The Problem
3SAT is the problem of whether a satisfying assignment exists
for a formula in 3-CNF.

Reduction from SAT to 3SAT is difficult because normally
converting to 3-CNF is an exponential blowup. The Tseitin
encoding is used instead to give a not-equivalent but
equisatisfiable formula (See Julian’s note, attached).
Note: Cook-Levin for TMs is already for 3SAT.

Hardness and Completeness Cook-Levin Theorem Other NP-Complete Problems

Clique

The CLIQUE problem
Given a graph G = (V ,E) and a number k , a k-clique is a
k-sized subset C of V , such that every vertex in C has an edge
to every other. (C forms a complete subgraph.) Decide
whether G has a k-clique.

Exercise: Why is CLIQUE ∈ NP?

Reducing from 3SAT , we have a formula

ϕ =
∧

1≤i≤k

(xi1 ∨ xi2 ∨ xi3)

The Graph
Each xij is a vertex. Connect xij to xi ′j ′ iff: i ̸= i ′ and xi ′j ′ is not
the negation of xij .
i.e. we connect literals in different clauses so long as they are not inconsistent.

Hardness and Completeness Cook-Levin Theorem Other NP-Complete Problems

Clique

The CLIQUE problem
Given a graph G = (V ,E) and a number k , a k-clique is a
k-sized subset C of V , such that every vertex in C has an edge
to every other. (C forms a complete subgraph.) Decide
whether G has a k-clique.Exercise: Why is CLIQUE ∈ NP?

Reducing from 3SAT , we have a formula

ϕ =
∧

1≤i≤k

(xi1 ∨ xi2 ∨ xi3)

The Graph
Each xij is a vertex. Connect xij to xi ′j ′ iff: i ̸= i ′ and xi ′j ′ is not
the negation of xij .
i.e. we connect literals in different clauses so long as they are not inconsistent.

Hardness and Completeness Cook-Levin Theorem Other NP-Complete Problems

Clique

The CLIQUE problem
Given a graph G = (V ,E) and a number k , a k-clique is a
k-sized subset C of V , such that every vertex in C has an edge
to every other. (C forms a complete subgraph.) Decide
whether G has a k-clique.Exercise: Why is CLIQUE ∈ NP?

Reducing from 3SAT , we have a formula

ϕ =
∧

1≤i≤k

(xi1 ∨ xi2 ∨ xi3)

The Graph
Each xij is a vertex. Connect xij to xi ′j ′ iff: i ̸= i ′ and xi ′j ′ is not
the negation of xij .
i.e. we connect literals in different clauses so long as they are not inconsistent.

Hardness and Completeness Cook-Levin Theorem Other NP-Complete Problems

Clique

The CLIQUE problem
Given a graph G = (V ,E) and a number k , a k-clique is a
k-sized subset C of V , such that every vertex in C has an edge
to every other. (C forms a complete subgraph.) Decide
whether G has a k-clique.Exercise: Why is CLIQUE ∈ NP?

Reducing from 3SAT , we have a formula

ϕ =
∧

1≤i≤k

(xi1 ∨ xi2 ∨ xi3)

The Graph
Each xij is a vertex. Connect xij to xi ′j ′ iff: i ̸= i ′ and xi ′j ′ is not
the negation of xij .
i.e. we connect literals in different clauses so long as they are not inconsistent.

Hardness and Completeness Cook-Levin Theorem Other NP-Complete Problems

Why does this work?

Since the vertices in one clause are disconnected, finding a
k-clique amounts to finding one literal for each clause, such
that they are all consistent — and so represent a satisfying
assignment. Conversely, any satisfying assignment generates
a k-clique.

Hardness and Completeness Cook-Levin Theorem Other NP-Complete Problems

P vs. NP

As previously mentioned, we don’t know if P and NP are really
distinct classes.
Find a polynomial time algorithm for any NP-hard problem and
you can win yourself one million US dollars from the Clay
Institute. (Also hire bodyguards because most web/banking security depends on
such problems being hard)

Many complexity theory results start with “if P ̸= NP...”

Example (NP-Intermediacy)
A problem is NP-Intermediate if it is in NP but not in P nor
NP-complete.
If P ̸= NP, then graph isomorphism is such a problem
(and there aren’t many others).

Hardness and Completeness Cook-Levin Theorem Other NP-Complete Problems

P vs. NP

As previously mentioned, we don’t know if P and NP are really
distinct classes.
Find a polynomial time algorithm for any NP-hard problem and
you can win yourself one million US dollars from the Clay
Institute. (Also hire bodyguards because most web/banking security depends on
such problems being hard)
Many complexity theory results start with “if P ̸= NP...”

Example (NP-Intermediacy)
A problem is NP-Intermediate if it is in NP but not in P nor
NP-complete.
If P ̸= NP, then graph isomorphism is such a problem
(and there aren’t many others).

Hardness and Completeness Cook-Levin Theorem Other NP-Complete Problems

P vs. NP

As previously mentioned, we don’t know if P and NP are really
distinct classes.
Find a polynomial time algorithm for any NP-hard problem and
you can win yourself one million US dollars from the Clay
Institute. (Also hire bodyguards because most web/banking security depends on
such problems being hard)
Many complexity theory results start with “if P ̸= NP...”

Example (NP-Intermediacy)
A problem is NP-Intermediate if it is in NP but not in P nor
NP-complete.
If P ̸= NP, then graph isomorphism is such a problem
(and there aren’t many others).

Hardness and Completeness Cook-Levin Theorem Other NP-Complete Problems

NP in Practice

As far as we know, NP problems are just hard: need
exponential search, so O(p(n) · 2n). So how do we solve them
in practice?

Randomised algorithms are often useful. Allow algorithms
to toss a coin. Surprisingly one can get randomised
algorithms that solve e.g. 3SAT in time O(p(n) · 4

3
n
).

(Why is this useful? 2100 ≈ 1031, while 1.33100 ≈ 1012)

Catch: (really) small probability of error!
In many special classes (e.g. sparse graphs, or
almost-complete graphs), heuristics lead to fast results.
See http://satcompetition.org/ for the state of the art.

http://satcompetition.org/

Hardness and Completeness Cook-Levin Theorem Other NP-Complete Problems

Next time...

We’ll be looking at the boundaries of the class NP, and what
lays beyond. Specifically, the classes of coNP and PSPACE, as
well as the polynomial hierarchy, analogous to the arithmetic
hierarchy we’ve already seen, but contained entirely within
PSPACE decidable problems.
If time, I might mention the sublinear classes of L and NL as
well, but these are not examinable.

	Hardness and Completeness
	Cook-Levin Theorem
	Other NP-Complete Problems

