Introduction to Theoretical Computer Science

Lecture 12: NP-Completeness

Dr. Liam O'Connor
University of Edinburgh
Semester 1, 2023/2024

Hardness

Definition

A problem P_{1} is polynomially reducible to P_{2}, written $P_{1} \leq_{P} P_{2}$, if there is a polynomially-bounded reduction from P_{1} to P_{2}.

Recall:

To prove that a problem P_{2} is hard, show that there is an easy reduction from a known hard problem P_{1} to P_{2}.

Definition

A problem P is $\mathbf{N P}$-Hard if, for every $A \in \mathbf{N P}, A \leq_{P} P$
\square If a problem P_{1} is NP-hard and $P_{1} \leq_{P} P_{2}$ then P_{2} is NP-Hard.

- To prove that a problem P_{2} is NP-hard, show that there's a polynomial reduction from a known NP-hard P_{1} to P_{2}.

Completeness

Question

If any NP-hard problem is shown to be in \mathbf{P}, what does that mean?

Definition

A problem is NP-complete if it is both NP-hard and in NP.

Do NP-Complete Problems Exist?

There are many such problems, including HPP and Timetabling. In fact, almost all NP-problems encountered in practice are either in \mathbf{P}, or $\mathbf{N P}$-complete.
Computers and Intractability - A guide to theory of NP-completeness, M.R. Garey and D.S. Johnson, Freeman 1979 lists a whole bunch.

The original NP-Complete problem

The Cook-Levin theorem states that a particular NP problem, SAT, is NP-complete. The theorem is usually proved for TMs; we shall do it later for RMs.

Why Cook-Levin?

The notion of NP-completeness, and the theorem, were due to Stephen Cook (and partly Richard Karp)-in the West. But as with many major mathematical results of the mid-20th century, they were discovered independently in the Soviet Union, by Leonid Levin. Since the fall of the Iron Curtain made Soviet maths more accessible, we try to attribute results to both discoverers.

SAT is a very significant problem about boolean formulae.

The SAT Problem

Given a boolean formula φ over a set of boolean variables X_{i}, is there an assignment of values to X_{i} which satisfies φ ?
(i.e. makes φ true?)

Equivalently, is φ non-contradictory?
$\square(A \vee B) \wedge(\neg B \vee C) \wedge(A \vee C)$ is satisfiable, e.g. by making A and C true. $(A \wedge B) \wedge(\neg B \wedge C) \wedge(A \wedge C)$ is not satisfiable.
■ The size of a SAT problem is the number of symbols in φ.
■ SAT is obviously in NP: just nondeterministically "guess" an assignment and check it.
■ It's also apparently exponential in reality: no obvious way to avoid checking all possible assignments (the truth table method).

The original NP-Complete problem

The Cook-Levin theorem states that a particular NP problem, SAT, is NP-complete. The theorem is usually proved for TMs; we shall do it later for RMs.

Why Cook-Levin?

The notion of NP-completeness, and the theorem, were due to Stephen Cook (and partly Richard Karp)-in the West. But as with many major mathematical results of the mid-20th century, they were discovered independently in the Soviet Union, by Leonid Levin. Since the fall of the Iron Curtain made Soviet maths more accessible, we try to attribute results to both discoverers.

SAT

SAT is a very significant problem about boolean formulae.

The SAT Problem

Given a boolean formula φ over a set of boolean variables X_{i}, is there an assignment of values to X_{i} which satisfies φ ?
(i.e. makes φ true?)

Equivalently, is φ non-contradictory?
$\square(A \vee B) \wedge(\neg B \vee C) \wedge(A \vee C)$ is satisfiable, e.g. by making A and C true. $(A \wedge B) \wedge(\neg B \wedge C) \wedge(A \wedge C)$ is not satisfiable.
\square The size of a SAT problem is the number of symbols in φ.
■ SAT is obviously in NP: just nondeterministically "guess" an assignment and check it.
■ It's also apparently exponential in reality: no obvious way to avoid checking all possible assignments (the truth table method).

The Proof

- The SAT problem is in NP: Nondeterministically guess an assignment and check it in polynomial time.
- The SAT problem is NP-Hard: Shown by reduction from any NP problem to SAT.

The Reduction

Suppose $(D, Q) \in \mathbf{N P}$. We shall construct a reduction $Q \leq_{p} S A T$. Given an instance $d \in D$, we shall construct a formula φ_{d} which can be satisfied if its variables describe the successful executions of an NRM checking Q. This machine can be polynomially bounded, so the size of φ_{d} will be polynomial in the size of d.

The Variables

Our NRM for $Q, M=\left(R_{0}, \ldots, R_{m-1}, I_{0}, \ldots, I_{n-1}\right)$ runs for s steps (i.e. $p(|d|)$ where d is our input and p is our polynomial bound).

Name Meaning

$C_{t j}$
$R_{\text {tik }} \quad k$ th bit of R_{i} at step t.

How Many
$s \cdot n$
$s \cdot m \cdot 2 s$

Why 2s?

How big can the registers get? Running s steps of $\operatorname{ADD}(0,0)$ will make R_{0} double s times, if it starts at $2^{|d|}$ then we need $2^{|d|+s}$ capacity. Then w.l.o.g. $2^{2 s}$ i.e. $2 s$ bits is enough.

The Formula

$C_{00} \wedge \rho_{\text {init }} \wedge \chi_{\text {one }} \wedge \bigwedge_{t} \chi_{t} \wedge \alpha$

Name Meaning
$\chi_{\text {one }}$
χ_{t}
$\rho_{\text {init }}$
α

Program counter is in one place.
How Many
$s \cdot n^{2}$
Step $t+1$ follows from step t. $s^{2} \cdot m$
Initial register values $m \cdot n$ machine acceptss

Details

Some formulae are easy:

Program counter is in one place

$$
\chi_{\text {one }} \equiv \bigwedge_{t} \bigvee_{j}\left(C_{t j} \wedge \bigwedge_{j^{\prime} \neq j} \neg C_{t j^{\prime}}\right)
$$

Some are more tedious:

Step $t+1$ follows from step t

$\chi_{t} \equiv \varphi_{t} \wedge \rho_{t}$ where φ_{t} models control flow changes and ρ_{t} models register changes.
$\varphi_{t} \equiv V_{j}\left(C_{t j} \wedge v_{t j}\right)$, where $v_{t j}$ is:

- $C_{t+1, j+1}$ if l_{j} is INC, ADD, or SUB.
- $C_{t+1, j+1} \vee C_{t+1, j^{\prime}}$ if I_{j} is $\operatorname{MAYBE}\left(j^{\prime}\right)$

■ $\left(\left(\bigvee_{k} R_{t i k}\right) \wedge C_{t+1, j+1}\right) \wedge\left(\left(\bigwedge_{k} \neg R_{t i k}\right) \wedge C_{t+1, j^{\prime}}\right)$ if ℓ_{j} is $\operatorname{DECJZ}\left(i, j^{\prime}\right)$

Register changes

The formulae concerning registers are very tedious, but can easily be found. See your hardware course!
(Also Julian's old notes for this course, which someone should remind me to upload)

Exercise

Write a formula $\rho_{t i i}^{+}$, which states that at step $t+1, R_{i}$ will have the sum of the values in R_{i} and $R_{i^{\prime}}$ at step t.

Despite this being very tedious, these formulae are polynomial $\left(\mathcal{O}\left(s^{4}\right)\right)$!

3SAT

- φ is in conjunctive normal form if it is of the form $\bigwedge_{i} \bigvee_{j} P_{i j}$ where each $P_{i j}$ is a literal (either a variable P or negation of one $\neg P$.).
■ φ is in k-CNF if each clause $\bigvee_{j} P_{i j}$ has at most k literals.

The Problem

3SAT is the problem of whether a satisfying assignment exists for a formula in 3-CNF.

Reduction from SAT to 3SAT is difficult because normally converting to $3-$ CNF is an exponential blowup. The Tseitin encoding is used instead to give a not-equivalent but equisatisfiable formula (See Julian's note, attached).
Note: Cook-Levin for TMs is already for 3SAT.

Clique

The CLIQUE problem

Given a graph $G=(V, E)$ and a number k, a k-clique is a k-sized subset C of V, such that every vertex in C has an edge to every other. (C forms a complete subgraph.) Decide whether G has a k-clique.Exercise: Why is CLIQUE \in NP?

Reducing from 3SAT, we have a formula

$$
\varphi=\bigwedge_{1 \leq i \leq k}\left(x_{i 1} \vee x_{i 2} \vee x_{i 3}\right)
$$

The Graph

Each $x_{i j}$ is a vertex. Connect $x_{i j}$ to $x_{i^{\prime} j^{\prime}}$ iff: $i \neq i^{\prime}$ and $x_{i^{\prime} j^{\prime}}$ is not the negation of $x_{i j}$.
i.e. we connect literals in different clauses so long as they are not inconsistent.

Why does this work?

Since the vertices in one clause are disconnected, finding a k-clique amounts to finding one literal for each clause, such that they are all consistent - and so represent a satisfying assignment. Conversely, any satisfying assignment generates a k-clique.

As previously mentioned, we don't know if \mathbf{P} and $\mathbf{N P}$ are really distinct classes.
Find a polynomial time algorithm for any NP-hard problem and you can win yourself one million US dollars from the Clay
Institute. (Also hire bodyguards because most web/banking security depends on such problems being hard)
Many complexity theory results start with "if $\mathbf{P} \neq \mathbf{N P} . .$. "

Example (NP-Intermediacy)

A problem is NP-Intermediate if it is in NP but not in \mathbf{P} nor NP-complete.
If $\mathbf{P} \neq \mathbf{N P}$, then graph isomorphism is such a problem (and there aren't many others).

NP in Practice

As far as we know, NP problems are just hard: need exponential search, so $\mathcal{O}(p(n) \cdot 2 n)$. So how do we solve them in practice?

■ Randomised algorithms are often useful. Allow algorithms to toss a coin. Surprisingly one can get randomised algorithms that solve e.g. $3 S A T$ in time $\mathcal{O}\left(p(n) \cdot \frac{4}{3}^{n}\right)$.
(Why is this useful? $2^{100} \approx 10^{31}$, while $1.33^{100} \approx 10^{12}$)
Catch: (really) small probability of error!
■ In many special classes (e.g. sparse graphs, or almost-complete graphs), heuristics lead to fast results. See http://satcompetition.org/ for the state of the art.

Next time...

We'll be looking at the boundaries of the class NP, and what lays beyond. Specifically, the classes of coNP and PSPACE, as well as the polynomial hierarchy, analogous to the arithmetic hierarchy we've already seen, but contained entirely within PSPACE decidable problems.
If time, I might mention the sublinear classes of \mathbf{L} and $\mathbf{N L}$ as well, but these are not examinable.

