Introduction to Theoretical Computer Science

Lecture 11: (Polynomial) Complexity

Dr. Liam O'Connor
University of Edinburgh
Semester 1, 2023/2024

Time Complexity

We have looked into whether problems can be computed or not. But are they easy to compute or hard to compute?

Time Complexity

We have looked into whether problems can be computed or not. But are they easy to compute or hard to compute?

Time Complexity

The time complexity of a (deterministic) machine M that halts on all inputs is a function $f: \mathbb{N} \rightarrow \mathbb{N}$ where $f(n)$ is the maximum number of steps that M uses on any input of size n.

Example

Example

Recall that $\left\{0^{i} 1^{i} \mid i \in \mathbb{N}\right\}$ is a CFL and decidable by e.g. a TM M_{1} that given input w :
1 Scan w and reject if anything not in $\{\sqcup, 0,1\}$ or 10 is found.
2 While there are 0s and 1s left in the tape:

- Scan across and replace with blanks both the leftmost 0 and the rightmost 1.
3 If any 0 s or 1 s are left on the tape, reject. Else, accept.

Example

Example

Recall that $\left\{0^{i} 1^{i} \mid i \in \mathbb{N}\right\}$ is a CFL and decidable by e.g. a TM M_{1} that given input w :
1 Scan w and reject if anything not in $\{\sqcup, 0,1\}$ or 10 is found.
2 While there are 0s and 1s left in the tape:

- Scan across and replace with blanks both the leftmost 0 and the rightmost 1.
3 If any 0s or 1s are left on the tape, reject. Else, accept.
Time complexity measure:

w	ε	01	$0^{2} 1^{2}$	$0^{3} 1^{3}$	$0^{4} 1^{4}$	$0^{5} 1^{5}$
$f(\|w\|)$	2	8	19	34	53	76

Big Letters

Recall from previous courses...

Big O and Ω

Let $f, g: \mathbb{N} \rightarrow \mathbb{R}_{\geq 0}$. Say that $f(n) \in \mathcal{O}(g(n))$ if there exists c, $n_{0}>0$ such that for all $n>n_{0}$:

$$
f(n) \leq c \cdot g(n)
$$

Similarly $f(n) \in \Omega(g(n))$ if:

$$
f(n) \geq c \cdot g(n)
$$

Big Letters

Recall from previous courses...

Big 0 and Ω

Let $f, g: \mathbb{N} \rightarrow \mathbb{R} \geq 0$. Say that $f(n) \in \mathcal{O}(g(n))$ if there exists $c, n_{0}>0$ such that for all $n>n_{0}$:

$$
f(n) \leq c \cdot g(n)
$$

Similarly $f(n) \in \Omega(g(n))$ if:

$$
f(n) \geq c \cdot g(n)
$$

Example

$f(n)=5 n^{3}+2 n^{2}+22 n+6$ is $\in \mathcal{O}\left(n^{3}\right)$.

Big Letters

Recall from previous courses...

Big 0 and Ω

Let $f, g: \mathbb{N} \rightarrow \mathbb{R} \geq 0$. Say that $f(n) \in \mathcal{O}(g(n))$ if there exists $c, n_{0}>0$ such that for all $n>n_{0}$:

$$
f(n) \leq c \cdot g(n)
$$

Similarly $f(n) \in \Omega(g(n))$ if:

$$
f(n) \geq c \cdot g(n)
$$

Example

$f(n)=5 n^{3}+2 n^{2}+22 n+6$ is $\in \mathcal{O}\left(n^{3}\right)$.
M_{1} 's complexity is $\mathcal{O}\left(n^{2}\right)$.

Logarithms

Recall that comparison-based sorting has $\Omega(n \log n)$ time complexity, and we have an $\mathcal{O}(n \log n)$ algorithm.

Logarithms

Recall that comparison-based sorting has $\Omega(n \log n)$ time complexity, and we have an $\mathcal{O}(n \log n)$ algorithm.

Omitting the bases

We may safely omit the base of the logarithms here because:

$$
\log _{a} n=\frac{\log _{b} n}{\log _{b} a}
$$

Model Concerns

Addition of two numbers is $\mathcal{O}(n)$ in our RM models.

Model Concerns

Addition of two numbers is $\mathcal{O}(n)$ in our RM models.

Why is this bad?

In TMs, addition is $\mathcal{O}(\log n)$ (e.g. consider binary addition).
\Rightarrow exponential penalty for RMs!

Model Concerns

Addition of two numbers is $\mathcal{O}(n)$ in our RM models.

Why is this bad?

In TMs, addition is $\mathcal{O}(\log n)$ (e.g. consider binary addition).
\Rightarrow exponential penalty for RMs!
If we extend our RMs with $\operatorname{ADD}(i, j) \operatorname{SUB}(i, j)$ which instantly add/subtract R_{j} from/to R_{i}, putting the result in R_{i} :

Less inaccurate.. but
Now addition is $\mathcal{O}(1)$ instead of $\mathcal{O}(\log n)$, but this is a smaller inaccuracy than the exponential penalty from before.

Variations in Models

Problem?

For sorting, we counted the number of comparisons as our time measure: we assumed comparison of small numbers and big numbers take the same time.

Variations in Models

Problem?

For sorting, we counted the number of comparisons as our time measure: we assumed comparison of small numbers and big numbers take the same time.

- What about control flow or memory access costs? In RMs this can be fast, but in TMs we have to move symbol by symbol.

Variations in Models

Problem?

For sorting, we counted the number of comparisons as our time measure: we assumed comparison of small numbers and big numbers take the same time.

- What about control flow or memory access costs? In RMs this can be fast, but in TMs we have to move symbol by symbol.
- As we've seen, addition has different complexities based on the model.

Question

Can we ignore these differences? How?

What counts as different?

While complexity is useful, the measures are slightly bogus:
■ If a problem is $\mathcal{O}(n)$ on some model, it's surely easy on any model.

What counts as different?

While complexity is useful, the measures are slightly bogus:
■ If a problem is $\mathcal{O}(n)$ on some model, it's surely easy on any model.
Not really: If n is a petabyte..
\square If a problem is $\Omega\left(2^{n}\right)$ on some model, it's surely hard on any model.

What counts as different?

While complexity is useful, the measures are slightly bogus:
■ If a problem is $\mathcal{O}(n)$ on some model, it's surely easy on any model.
Not really: If n is a petabyte..

- If a problem is $\Omega\left(2^{n}\right)$ on some model, it's surely hard on any model.
Actually: There are problems that are much worse than this, but still solvable for real examples. We'll see later.
- What about something that is $\mathcal{O}\left(n^{10}\right)$ or $\Omega\left(n^{10}\right)$? An $\Omega\left(n^{10}\right)$ problem seems practically insoluble.

What counts as different?

While complexity is useful, the measures are slightly bogus:
■ If a problem is $\mathcal{O}(n)$ on some model, it's surely easy on any model.
Not really: If n is a petabyte..

- If a problem is $\Omega\left(2^{n}\right)$ on some model, it's surely hard on any model.
Actually: There are problems that are much worse than this, but still solvable for real examples. We'll see later.
- What about something that is $\mathcal{O}\left(n^{10}\right)$ or $\Omega\left(n^{10}\right)$? An $\Omega\left(n^{10}\right)$ problem seems practically insoluble. However: Maybe a new algorithm or fancy model makes it $\Omega\left(n^{2}\right)$?

What counts as different?

While complexity is useful, the measures are slightly bogus:
■ If a problem is $\mathcal{O}(n)$ on some model, it's surely easy on any model.
Not really: If n is a petabyte..

- If a problem is $\Omega\left(2^{n}\right)$ on some model, it's surely hard on any model.
Actually: There are problems that are much worse than this, but still solvable for real examples. We'll see later.
■ What about something that is $\mathcal{O}\left(n^{10}\right)$ or $\Omega\left(n^{10}\right)$? An $\Omega\left(n^{10}\right)$ problem seems practically insoluble. However: Maybe a new algorithm or fancy model makes it $\Omega\left(n^{2}\right)$?
- There's also our coefficients. If $f(n) \geq 10^{100} \log n$, that's only $\mathcal{O}(\log n)$.
However this isn't common.

Complexity Classes

Definition

Let $t: \mathbb{N} \rightarrow \mathbb{R}_{\geq 0}$. A time complexity class $\operatorname{TIME}(t(n))$ to be the collection of all problems that are decidable by a machine in $\mathcal{O}(t(n))$ time.

Complexity Classes

Definition

Let $t: \mathbb{N} \rightarrow \mathbb{R} \geq 0$. A time complexity class $\operatorname{TIME}(t(n))$ to be the collection of all problems that are decidable by a machine in $\mathcal{O}(t(n))$ time.

We'll give a more precise definition of time in terms of bounded machines later.

Example

Recall $A=\left\{0^{i} 1^{i} \mid i \in \mathbb{N}\right\}$. Our TM M_{1} can decide this in $\mathcal{O}\left(n^{2}\right)$. Therefore $A \in \operatorname{TIME}\left(n^{2}\right)$.

Can we do better?

Can we come up with a machine M_{2} that shows A is in $\operatorname{TIME}(t(n))$ for some $t(n)$ that is asymptotically $<n^{2}$?

Can we do better?

Can we come up with a machine M_{2} that shows A is in $\operatorname{TIME}(t(n))$ for some $t(n)$ that is asymptotically $<n^{2}$?

Example

Given w input:
1 Scan w left to right and reject if 10 is found.
2 Repeat as long as there are 0s and 1s on the tape:
2.1 Scan from right to left and reject if there is an odd number of non-Xs on the tape.
2.2 Scan from left to right and replace every other 0 by an X, beginning from the first 0 . Then, do the same for 1 s .
3 If neither 0 s nor 1 s are left, accept. Else, reject.
Steps 1, 2.1, 2.2, and 3 are all $\mathcal{O}(n)$. Step 2 runs the substeps $\mathcal{O}(\log n)$ times. So this is $\mathcal{O}(n \log n)$.

Comparing real times

Comparing the running times of M_{1} and M_{2} :

w	ε	01	$0^{2} 1^{2}$	$0^{3} 1^{3}$	$0^{4} 1^{4}$	$0^{5} 1^{5}$
$f_{M_{1}}(\|w\|)$	2	8	19	34	53	76
$f_{M_{2}}(\|w\|)$	1	15	45	63	117	141

M_{2} has "better" complexity, but M_{1} performs better for small n. (M_{2} will be faster for $0^{20} 1^{20}$)

Doing better

Could we do still better for A ? I.e. a sub- $\mathcal{O}(n \log n)$ algorithm for A ?

Doing better

Could we do still better for A ? I.e. a sub- $\mathcal{O}(n \log n)$ algorithm for A ?

Example (Two tape TMs)

The answer is no, for a single-tape TM. But in a two tape TM, we can copy all os onto the second tape and then compare the number of 0 s to 1 s by moving the second tape head synchronously with the first.

Polynomial Time

Definition

$$
\mathbf{P}=\bigcup_{k \in \mathbb{N}} \operatorname{TIME}\left(n^{k}\right)
$$

That is, the class of problems decidable with some (deterministic) polynomial time complexity.

Polynomial Time

Definition

$$
\mathbf{P}=\bigcup_{k \in \mathbb{N}} \operatorname{TIME}\left(n^{k}\right)
$$

That is, the class of problems decidable with some (deterministic) polynomial time complexity.

- Problems in \mathbf{P} are called tractable.

Polynomial Time

Definition

$$
\mathbf{P}=\bigcup_{k \in \mathbb{N}} \operatorname{TIME}\left(n^{k}\right)
$$

That is, the class of problems decidable with some (deterministic) polynomial time complexity.

■ Problems in \mathbf{P} are called tractable.

- The class is robust: "Reasonable" changes in model don't change it, and "reasonable" translations between problems preserve membership in \mathbf{P}.

Polynomial Time

Definition

$$
\mathbf{P}=\bigcup_{k \in \mathbb{N}} \operatorname{TIME}\left(n^{k}\right)
$$

That is, the class of problems decidable with some (deterministic) polynomial time complexity.

■ Problems in \mathbf{P} are called tractable.

- The class is robust: "Reasonable" changes in model don't change it, and "reasonable" translations between problems preserve membership in \mathbf{P}.
■ Any problem not in \mathbf{P} is $\Omega\left(n^{k}\right)$ for every k, e.g. 2^{n} or $2^{\sqrt{n}}$.

Outside P

Definition

A polynomially-bounded RM is an RM together with a polynomial (wlog n^{k} for some k), such that given an input w, it will always halt after executing $|w|^{k}$ instructions.

Outside P

Definition

A polynomially-bounded RM is an RM together with a polynomial (wlog n^{k} for some k), such that given an input w, it will always halt after executing $|w|^{k}$ instructions.

A problem Q is in \mathbf{P} iff it is computed by polynomially-bounded RM.

Polynomial Reductions

Recall:

To prove that a problem P_{2} is hard, show that there is an easy reduction from a known hard problem P_{1} to P_{2}.

Polynomial Reductions

Recall:

To prove that a problem P_{2} is hard, show that there is an easy reduction from a known hard problem P_{1} to P_{2}.

Definition

A polynomial reduction from $P_{1}=\left(D_{1}, Q_{1}\right)$ to $P_{2}=\left(D_{2}, Q_{2}\right)$ is a P-computable function $f: D_{1} \rightarrow D_{2}$ such that $d \in Q_{1}$ iff $f(d) \in Q_{2}$.

- If P_{2} is in \mathbf{P}, then P_{1} is in \mathbf{P} straightforwardly.

Polynomial Reductions

Recall:

To prove that a problem P_{2} is hard, show that there is an easy reduction from a known hard problem P_{1} to P_{2}.

Definition

A polynomial reduction from $P_{1}=\left(D_{1}, Q_{1}\right)$ to $P_{2}=\left(D_{2}, Q_{2}\right)$ is a P-computable function $f: D_{1} \rightarrow D_{2}$ such that $d \in Q_{1}$ iff $f(d) \in Q_{2}$.

- If P_{2} is in \mathbf{P}, then P_{1} is in \mathbf{P} straightforwardly.
- Therefore: To prove that a problem P_{2} is not in \mathbf{P}, show that there is a polynomial reduction from a known non- \mathbf{P} problem P_{1} to P_{2}.

Polynomial Reductions

Recall:

To prove that a problem P_{2} is hard, show that there is an easy reduction from a known hard problem P_{1} to P_{2}.

Definition

A polynomial reduction from $P_{1}=\left(D_{1}, Q_{1}\right)$ to $P_{2}=\left(D_{2}, Q_{2}\right)$ is a P-computable function $f: D_{1} \rightarrow D_{2}$ such that $d \in Q_{1}$ iff $f(d) \in Q_{2}$.

- If P_{2} is in \mathbf{P}, then P_{1} is in \mathbf{P} straightforwardly.

■ Therefore: To prove that a problem P_{2} is not in \mathbf{P}, show that there is a polynomial reduction from a known non- \mathbf{P} problem P_{1} to P_{2}.
Question: Is this more like a mapping or Turing reduction?

Apparently Intractable Problems

These problems appear to be non-P, so if they are, we could use them as our known non-P problems.

Apparently Intractable Problems

These problems appear to be non-P, so if they are, we could use them as our known non-P problems.

Example (Hamiltonian Path Problem)

Given a graph $G=(V, E)$, is there a path that visits every vertex in V exactly once?
We could solve this in $\mathcal{O}(|V|$!), but this is not ideal..

Apparently Intractable Problems

These problems appear to be non-P, so if they are, we could use them as our known non-P problems.

Example (Hamiltonian Path Problem)

Given a graph $G=(V, E)$, is there a path that visits every vertex in V exactly once?
We could solve this in $\mathcal{O}(|V|$!), but this is not ideal..

Example (Timetabling)

Given students taking exams, and timetable slots for exams, is it possible to schedule the exams so that there are no clashes? It also apparently requires looking at exponentially many possible assignments.
(That's why Registry starts timetabling exams 9 weeks in advance...)

Apparently Intractable Problems

These problems appear to be non-P, so if they are, we could use them as our known non-P problems.

Example (Hamiltonian Path Problem)

Given a graph $G=(V, E)$, is there a path that visits every vertex in V exactly once?
We could solve this in $\mathcal{O}(|V|$!), but this is not ideal..

Example (Timetabling)

Given students taking exams, and timetable slots for exams, is it possible to schedule the exams so that there are no clashes? It also apparently requires looking at exponentially many possible assignments.
(That's why Registry starts timetabling exams 9 weeks in advance...)
Open problem: Are they really not in \mathbf{P} ?

Checking

Consider HPP (the Hamiltonian Path Problem) or timetabling. Both are apparently not in P.

Checking

Consider HPP (the Hamiltonian Path Problem) or timetabling. Both are apparently not in P.

However..

They are easy to check:
Given a claimed solution, it's tractable to check if the solution is indeed a correct solution.

Checking

Consider HPP (the Hamiltonian Path Problem) or timetabling. Both are apparently not in \mathbf{P}.

However..

They are easy to check:
Given a claimed solution, it's tractable to check if the solution is indeed a correct solution.

Theorem

Any problem that can be checked in polynomial time on a deterministic RM/TM can be computed in polynomial time on a nondeterministic RM/TM.

Nondeterminism

We can have nondeterministic RMs just like we have nondeterministic finite automata.

Nondeterminism

We can have nondeterministic RMs just like we have nondeterministic finite automata.

The Change

Add a special instruction $\operatorname{MAYBE}(j)$ that will nondeterministically either do nothing or jump to l_{j}.

Nondeterminism

We can have nondeterministic RMs just like we have nondeterministic finite automata.

The Change

Add a special instruction $\operatorname{MAYBE}(j)$ that will nondeterministically either do nothing or jump to l_{j}.

Example (generating a nondetermined number)

beg:	CLEAR	R_{0}
MAYBE	end	
INC	0	
	GOTO	beg

end :

Non-nondeterminism

Acceptance

An NRM accepts if there is some run (sequence of instructions through the choices) halts and accepts.
"Accepts" could mean halting, halting with 1 in R_{0} or anything else.

Non-nondeterminism

Acceptance

An NRM accepts if there is some run (sequence of instructions through the choices) halts and accepts.
"Accepts" could mean halting, halting with 1 in R_{0} or anything else.
■ Nondeterminism is NOT probability. No randomness is involved.

Non-nondeterminism

Acceptance

An NRM accepts if there is some run (sequence of instructions through the choices) halts and accepts.
"Accepts" could mean halting, halting with 1 in R_{0} or anything else.
■ Nondeterminism is NOT probability. No randomness is involved.

- The presence of infinite runs doesn't matter if there are also accepting finite runs.

Non-nondeterminism

Acceptance

An NRM accepts if there is some run (sequence of instructions through the choices) halts and accepts.
"Accepts" could mean halting, halting with 1 in R_{0} or anything else.
■ Nondeterminism is NOT probability. No randomness is involved.

- The presence of infinite runs doesn't matter if there are also accepting finite runs.
■ I sometimes like to think of MAYBE as FORK: the machine forks a copy of itself which takes the jump. If any copy accepts, it signals the OS, which kills off all the others.

Non-nondeterminism

Acceptance

An NRM accepts if there is some run (sequence of instructions through the choices) halts and accepts.
"Accepts" could mean halting, halting with 1 in R_{0} or anything else.
■ Nondeterminism is NOT probability. No randomness is involved.

- The presence of infinite runs doesn't matter if there are also accepting finite runs.
■ I sometimes like to think of MAYBE as FORK: the machine forks a copy of itself which takes the jump. If any copy accepts, it signals the OS, which kills off all the others.
Question: Do NRMs have the same deciding power as RMs?

Comparing RMs and NRMs

Power

NRMs have the same deciding power as RMs, because we can use the interleaving technique to simulate all runs of an NRM.
Sipser has the same result for TMs.

Comparing RMs and NRMs

Power

NRMs have the same deciding power as RMs, because we can use the interleaving technique to simulate all runs of an NRM.
Sipser has the same result for TMs.

However!

In time n, an RM can explore only $\mathcal{O}(n)$ possibilities, but an NRM can explore $2^{\mathcal{O}(n)}$ possibilities.

NRMs are potentially exponentially faster than RMs

NP

Definition

Let $t: \mathbb{N} \rightarrow \mathbb{R}_{\geq 0}$. Define $\operatorname{NTIME}(t(n))$ to be the collection of all problems that are decidable by an NRM in $\mathcal{O}(t(n))$ time.

NP

Definition

Let $t: \mathbb{N} \rightarrow \mathbb{R} \geq 0$. Define $\operatorname{NTIME}(t(n))$ to be the collection of all problems that are decidable by an NRM in $\mathcal{O}(t(n))$ time.

Definition

$$
\mathbf{N P}=\bigcup_{k \in \mathbb{N}} \mathbf{N T I M E}\left(n^{k}\right)
$$

That is, the class of problems decidable with some nondeterministic polynomial time complexity.

NP

Definition

Let $t: \mathbb{N} \rightarrow \mathbb{R} \geq 0$. Define $\operatorname{NTIME}(t(n))$ to be the collection of all problems that are decidable by an NRM in $\mathcal{O}(t(n))$ time.

Definition

$$
\mathbf{N P}=\bigcup_{k \in \mathbb{N}} \mathbf{N T I M E}\left(n^{k}\right)
$$

That is, the class of problems decidable with some nondeterministic polynomial time complexity.

Is HPP in NP?

NP

Definition

Let $t: \mathbb{N} \rightarrow \mathbb{R} \geq 0$. Define $\operatorname{NTIME}(t(n))$ to be the collection of all problems that are decidable by an NRM in $\mathcal{O}(t(n))$ time.

Definition

$$
\mathbf{N P}=\bigcup_{k \in \mathbb{N}} \mathbf{N T I M E}\left(n^{k}\right)
$$

That is, the class of problems decidable with some nondeterministic polynomial time complexity.

Is HPP in NP? Nondeterministically "guess" any path and check if it is Hamiltonian $(\mathcal{O}(n))$.

A Short Aside

Can we implement nondeterminism or is it just a theoretical exercise?

A Short Aside

Can we implement nondeterminism or is it just a theoretical exercise?

Quantum Computing

Quantum computers can achieve a similar effect: an n-qubit computer computes on all 2^{n} values simultaneously. But it's hard to get many qubits; and there are subtleties-not every NP algorithm is quantum-computable (as far as we know).

Is NP All?

Is every exponentially-bounded problem in NP? probably No!

Tough problem

Given a machine M and input w, determine if M halts in less than $2^{|w|}$ steps.
There doesn't seem to be anything to do but run the machine M for an exponential number of steps \Rightarrow Probably not in NP.

